Skip to content
September 19, 2013 / mikelloydtech

Drones, Fruit Pianos and Internet of Learning-Things in San Luis, Argentina

Argentina is recognized by the World Bank as one of the top 10 countries with big education laptop projects to learn from, and San Luis – a province in the heart of Argentina – is leading the way. San Luis is home to one of the most impactful education technology initiatives in Latin America, and I was fortunate to be invited to give the keynote for the education track at San Luis Digital 2013 – their annual festival of technology. The presentation was entitled ‘Technical Creativity’ – a whistle-stop tour of the Internet of Learning-Things.

ULP_3988

A key part of the presentation was a demo of the Parrott 2 Drone…

ULP_4163(1) - Copy

This ARM powered drone connects to a mobile phone via a local Wi-Fi link and sends live video feeds back to the phone or to a USB stick, which allowed me to shoot this aerial view of the audience -

I was joined on stage by Alejandro Munizaga, Dean of Universidad de La Punta, who demonstrated his piano playing abilities on a banana keyboard using MaKey MaKey and Scratch.

ULP_4147 - Copy

Slides from the event can be downloaded here -

English version

San Luis Keynote, Internet of Learning Things

Spanish version

San Luis Keynote, Internet Educativa – Spanish

ver

This, the 7th San Luis Digital, saw a crowd of 30,000 people attend a feast of events ranging from hackerthons and robotics competitions, to DJ sets. The event gave a 360 degree view of the social use of technology – health, security, environment, traffic management etc.

Education was very well represented there, and justifiably so. The province of San Luis is well into a One-to-One initiative as part of their investment in education, science and technology. All citizens have free WiFi internet access from anywhere – a right enshrined in law and delivered through WBS-2400 base stations across the entire region.

wifi base station

The government aims to increase maths, reading, writing, science, and ICT skills to prepare future engineering and science professionals. Most children now have a Classmate laptop, and over the next 10 years, the government plans to purchase 10,000 laptops each year until all 104,000 school-age children have a device. According to an IDB evaluation, results have demonstrated notable improvements in language, math, and science achievement following the integration of One-to-One programs in San Luis classrooms.

A notable area of success on display at San Luis Digital 2013 is robotics. A project called “Robotics for All” which is run from the University of La Punta supplies the schools with robotics kits. Each kit has an Arduino board and custom software resembling Scratch runs on Classmates to allow the students to program their robots.

The results are highly impressive. Students from San Luis, represented Argentina and came in the top 5 at the recent Robotics World Cup in the Netherlands. Children as young as 7 explained how they made a model city with working traffic lights, whilst older students battled it out with Arduino based robots.

2013-09-14 18.06.30

The event was completely packed with children eager to learn about the latest in technology and robotics, and sessions lead by the wonderful Gonzalo Zabala -

2013-09-14 18.27.48

San Luis is a shining example of where a combination of clear vision, political will, government backing, organizational capability, and a socially integrated higher education sector come together for the good of all.

I was lucky to be able to visit some schools there including the Isaac Newton and Nelson Mandela schools. Schooling in San Luis certainly lives up to its reputation for being best in class for the creative use of technology.

ULP_5443

Thanks to all the children and teachers that I met in the San Luis Digital and Nelson Mandela schools; Alejandro Munizaga, Marcela Magallanes, Daniel Rivas, Cristian Moleker and the team at La Punta University; Marcelo Sosa, Minister of Education; Silvina Peralta; Gonzalo Zabala for inspiring presentations; Jimena Jacubovich, Hernan Muhafara, Mariana Maggio, Angel Dubon, and Miguel Ayerza from Microsoft; Axel Esteban Seleme for terrific photos; and Leticia Martinez and Elina Pascucci, Translation San Luis, for translation services.

September 14, 2013 / mikelloydtech

Internet de Educativa

El acceso masivo a Internet tiene apenas 20 años y durante este tiempo los Servicios Web han revolucionado por completo nuestra interacción – entonces, ¿cómo nos transformará Internet en los próximos 20 años?

Este artículo explica cómo se puede diseñar la arquitectura de tecnologías para permitir que el aprendizaje florezca en el mundo emergente de la Internet de las Cosas.

Más allá de la “Internet Social”

En 2008, el número de cosas conectadas a Internet excedía el número de personas en la Tierra – pero esto sigue siendo menos del 1% de todas las cosas físicas del mundo actual. Cisco’s Internet Business Solutions Group (IBSG) predice que habrá unos 25 billones de dispositivos conectados para el año 2015, y 50 billones para el año 2020, mientras que IDC (International Data Corporation) estima que la comunicación entre máquinas crecerá al 41% de la comunicación a través de Internet para el año 2020.

La Internet de las Cosas representa un gran cambio de cómo se utiliza la informática (IT). La computadora personal y la ‘Internet de las Personas’ definieron la era Informática anterior. La Internet de las Cosas será definida por tecnologías integradas y ubicuas como la impresión 3D, sensado avanzado y administración de la energía.

Smart clothing

Un ejemplo claro de este Nuevo mundo es la ropa, Tshirt OS de Cutecircuit -

 

3d printing

Otro ejemplo es el rápido desarrollo y difusión de la impresión en 3D-

La Internet de los dispositivos  está avanzando repentinamente en áreas como la industria, la medicina y el transporte; ¿pero que hay de la educación? Las iniciativas de ‘Ciudades Inteligentes’ atraen la mayor atención; ¿pero qué hay de la Educación Inteligente? ¿Que hay de la ‘Internet de las Cosas Educativas’?

Para poder responder esta pregunta, ocho escuelas en el Reino Unido formarán parte de un esquema con un presupuesto de $1,2m para descubrir cómo la “Internet de las Cosas” puede mejorar el aprendizaje de ciencia, tecnología y geografía. Se enseñará a alumnos y docentes a medir y compartir datos – mediante el uso de tecnología de Internet de las Cosas – de manera que permita hacer más divertido el aprendizaje, relacionarse directamente con el curriculum, y básicamente inspirar el diseño de la nueva generación de escuelas.

Mientras que estas nuevas escuelas en países desarrollados utilizan a diario el manejo avanzado de energía y seguridad, la tecnología de la Internet de las Cosas, se está gestando un cambio más fundamental. Hay una evidente transición hacia el enfoque “Autodidacta” (Do It Yourself – DIY) en la tecnología que se aplica en el aula. Un buen ejemplo de esto es el kit de cámaras digitales Bigshot– http://www.bigshotcamera.com

Una parte clave de esta tendencia de “Autodidacta” (DIY) es el uso en crecimiento de mini computadoras de placa integrada, en particular la Arduino y la Raspberry Pi. Arduino es un sistema completamente integrado, mientras que la Raspberry Pi tiene tanto funcionalidades integradas como de PC. Ambas están diseñadas para enseñar ciencia de la computación y electrónica, y están optimizadas para manejar tecnología de control – es decir: el mundo de los sensores, motores, pantallas, etc (Cosas).

Lego ha provisto tecnologías de control en las escuelas por décadas, y Turtle y otras tecnologías del movimiento Constructivista han sido aplicadas por más tiempo aún. Sin embargo, Arduino y Raspberry Pi has acelerado el enfoque Constructivista. Para obtener resultados de estos sistemas, los usuarios deben comprender realmente cómo funciona la tecnología, y una vez que los niños entienden los conceptos básicos, se libera su imaginación y creatividad. En una época en que algunos ‘niños creen que el queso sale de las plantas’ uno se pregunta de dónde creen que vienen los aparatos electrónicos, por lo que es grandioso ver cuando los niños se conectan más al mundo real de cómo funcionan las cosas.

Slide3

Arduino – la herramienta más famosa del mundo para el aprendizaje de electrónica

Arduino y Rasberry Pi están rodeadas de un ecosistema vasto y complejo de dispositivos y códigos, y uno de los dispositivos más notables es el Makey Makey. Proveniente del mismo campo que nos dio Lego Mindstorms y Scratch, MaKey MaKey es una placa de circuito impreso con pinzas cocodrilo y cables que permite al usuario convertir prácticamente cualquier objeto en una tecla de un teclado de computadora. Por ejemplo, una banana podría ser utilizada para la letra ‘A’, una figura de plastilina para la letra ‘B’, y una moneda para la letra ‘C’. Usando este simple principio, se puede convertir una escalera en un piano, o los trazos de lápiz de grafito en un papel pueden utilizarse con un controlador de videojuegos.

Makey Makey

 

Ni la Arduino ni la Raspberry Pi están cerca de ser tan prolíferas como las PCs o Tablets, y se venden en una pequeña fracción del volumen de los dispositivos de consumidores y empresariales que se abren paso en el área de la Educación – decenas de miles por mes en comparación a millones. Sin embargo, a diferencia de las PCs y Tablets, Arduino y Raspberry Pi han sido diseñadas específicamente para la educación – entonces ¿son ellas las que nos muestran el camino a seguir?

El costo de un set completo para el aula de Raspberry Pis (alrededor de $35 c/u) con navegación de Internet, herramientas de productividad, periféricos, sensores y dispositivos que sería aproximadamente la mitad del set equivalente de Tablets o PCs. De todas maneras, la gran desventaja de la  Raspberry Pi es que requiere de paciencia y altos niveles de conocimiento técnico para su configuración y operación – los usuarios necesitan familiarizarse con Linux y notación de líneas de comando. En la actualidad el ambiente de soporte de  Raspberry Pi está muy por debajo de lo que sería óptimamente organizado como para una proliferación masiva.

Para tener una mejor idea de qué puede significar la Internet de las Cosas para la Educación, necesitamos observar más allá del mundo “Autodidacta” (DIY World) y pensar sobre una arquitectura completa de la “Internet de las Cosas Educativas”.

Hacia una “Internet Educativa”

Las necesidades deberían guiar el diseño de la Internet de las Cosas Educativas – no al revés. Como con todas las preguntas sobre tecnología, la primera que debemos formular es “¿por qué?”. ¿Qué escenarios nuevos nos debería brindar una ‘Internet de las Cosas Educativas’? Aquí tenemos algunos ejemplos:

Conocimientos sobre Tecnología.

En los próximos 20 años, las máquinas tomarán mayor cantidad de decisiones. En un mundo en que tantas cosas se pueden sensar y observar, la seguridad y la privacidad adquieren nuevos significados y relevancia. En un mundo en que los sistemas serán en su mayoría manejados de manera remota, los tecnócratas controlarán la mayor parte del mundo en el que vivimos. Es muy importante, por lo tanto, que los niños logren entender cómo funciona este Nuevo mundo, y que aprendan a construirlo y controlarlo. Para alcanzar este entendimiento, los niños necesitan tener la oportunidad de crear sistemas que combinen la ciencia de la computación con la electrónica y el diseño de productos.

Ciencia, Tecnología y Geografía.

El uso de sensores, registradores de datos y dispositivos electrónicos básicos han sido por mucho tiempo parte del curriculum Nacional del Reino Unido, pero con la proliferación de sensores, dispositivos, drones y kits de bajo costo, es razonable esperar un aumento en el incremento del uso y sofisticación de la aplicación de estas tecnologías alrededor del mundo.

Por ejemplo, el Parrot AR.Drone2.0  permite a los estudiantes hacer un relevamiento de un área usando un teléfono celular. Se graba un video HD en una tarjeta de memoria con conector USB, o es retransmitido directamente al teléfono. Se puede brindar Ciencia (ej. Física de vuelo); Tecnología (ej. OS, redes, control); y Geografía (ej. relevamiento de suelo, observaciones) en un solo paquete, de una manera completamente atractiva para niños de todas las edades.

El desarrollo clave en este espacio es la oportunidad que tienen los niños para aprender a codificar con Scratch, Python y .NET Gadgeteer ofreciéndoles una trayectoria de aprendizaje progresivo. Scratch tiene incluso una manera de controlar el GPIO (dispositivo de entrada/salida para propósitos generales) de la Raspberry Pi, lo que permite a los alumnos a controlar fácilmente una variedad de dispositivos.

Internet of Learning-Things - beginnings

Internet of Learning-Things – beginnings

Scratch ofrece una entrada fácil al mundo de la programación

Aprendizaje ubicuo y conciente del contexto.

Con dispositivos capaces de comunicarse con otros fácilmente, la realidad aumentada debería esparcirse desde los museos y convertir objetos diarios del ambiente en objetos de aprendizaje. Por ejemplo, se podría apuntar el teléfono celular hacia un edificio y ver que había allí en el pasado que tenga importancia histórica; apuntarlo a una planta o animal y obtener datos científicos clave; usar un teléfono para controlar un drone y recibir imágenes en tiempo real del barrio. Los kioskos ofrecen otra plataforma para la realidad aumentada, y Lego nos brinda un buen ejemplo que muestra los tipos de escenarios que nos ofrece la realidad aumentada (AR) –

Lego Artificial Reality

Aprendizaje a través del juego diario

Un estudio de mercado realizado por Tangull America indicó que el Mercado de juguetes con informática integrada crece un 15% anual, y aumentará las ventas a US $146 billones para el año 2015. Algunos ejemplos incluyen mascotas interactivas, muñecas que comparten secretos, y compañeros de juego “reales” – que miden los cambios de expresión facial y usan Inteligencia Artificial para responder. Hay grandes oportunidades para integrar herramientas de aprendizaje en los juguetes de los niños.

Aprendizaje personalizado

Con un más amplio espectro de oportunidades de aprendizaje disponibles, y un mayor uso de aprendizaje basado en proyectos, se incrementa el potencial para un aprendizaje más personalizado.

Los dispositivos que se conectan a sistemas de grandes (y nano) datos, contenidos y SRM, pueden habilitar más y mejores servicios de aprendizaje electrónico (e-learning) que se adapten dinámicamente a las necesidades del alumno a medida que se desarrolla.

“El aumento de dispositivos conectados a Internet le dará a los alumnos acceso a recursos incalculables de datos auténticos de una forma amigable.  A través de sus conexiones a Internet en dispositivos múltiples, los alumnos recopilarán estos datos y trabajarán con otros alumnos y expertos de todo el mundo para analizar, interpreta y manipular la información y así contribuir de manera significativa al desarrollo del entendimiento social y científico. Como resultado, el aprendizaje se tornará más contextualizado, relevante y significativo.”

Dr Michelle Selinger, Director de Práctica de la Educación en Servicio de Consultoría de Cisco

Exámenes y evaluaciones de alto nivel en cualquier momento y en cualquier lugar.

Casi todos en el mundo se han presentado o se presentarán a algún examen u otro tipo de evaluación de alto nivel. Sistemas de seguridad a nivel de dispositivos, sistemas biométricos integrados como los de reconocimiento facial ofrecen formas de asegurar honestidad en los exámenes. También los dispositivos locales, los routers podrían ser habilitados para seguridad de estándares de evaluación en ‘Zonas de Evaluación’ designadas.

Hacia una Arquitectura de Internet de las Cosas Educativas

El primer problema técnico que necesita ser resuelto es que cada dispositivo conectado a Internet requiere de una dirección de IP para comunicarse con otros dispositivos. Actualmente, la mayor parte del tráfico de Internet ocurre a través de IPv4, que permite ‘apenas’ 4,3 billones de direcciones. La versión actual – IPv6 – permite 7,9 x 1028 veces más direcciones, pero IPv6 e IPv4 no son ínter-operables, por lo que la transición no será inmediata ni sin contratiempos.

El siguiente problema a solucionar es el desarrollo de protocolos para datos, redes, transporte, sesiones y aplicaciones. Hay mucho trabajo en curso como el MQTT (Message Queue Telemetry Transport), un protocolo de conectividad de máquina a máquina/Internet de las Cosas, pero hasta ahora no hay estándares reales para Internet de las Cosas – diferente de la Internet de Personas, que utiliza protocolos como http (para hipertextos), y XMPP (Protocolo extensible de mensajería y comunicación de presencia) (para mensajes instantáneos, comunicación de presencia y chat).

Por lo tanto, lograr alguna forma de estandarización de arquitectura para una Internet de las Cosas Educativas nos va a llevar cierto tiempo.

Sin embargo, mientras tanto, hay conceptos y escenarios que pueden ayudar. Una manera de ver la arquitectura de la Internet de las Cosas Educativas es separarla en capas/categorías funcionales, y ubicar las tecnologías y servicios existentes en dichas capas/categorías:

IoLT Arch

Escenario de Internet de Cosas Educativas

Un alumno ha aprendido algo significativo y ha verificado su aprendizaje a través de una serie de evaluaciones electrónicas comunes. Ahora quiere recibir una calificación completa de su aprendizaje de algún comité oficial de evaluación (ej, Certificado de Educación Secundaria de la Universidad de Oceanía). El alumno encuentra una “Zona de Evaluación” oficial – una sala o área dispuesta según el estándar de examen escrito y monitoreada para verificar la honestidad del evaluado. El alumno ingresa al sistema de evaluación que verifica el usuario a través de dispositivos biométricos de seguridad, luego bloquea el dispositivo para evitar el acceso a recursos locales. Se le presentan las preguntas al alumno quien escribe en el teclado o a mano las respuestas. El dispositivo envía una versión encriptada de las respuestas del alumno a un Router WiFi de Examen Electrónico Listo, (gateway) que retransmite los datos a los servidores, los cuales poseen también un dispositivo de seguridad para verificar la validez y condiciones de seguridad de las respuestas del alumno. A partir de esto, se evalúan las respuestas del examen y se le asigna la calificación a su debido tiempo, enviando luego un certificado encriptado al alumno.

Mientras que esto puede parecer disparatado y problemático, vale la pena dedicar unos minutos a comparar el tipo de avances que se han logrado en finanzas y medicina por Internet y telefonía móvil. Por ejemplo, los diagnósticos médicos están adelantados años luz de los diagnósticos educativos. En una era en la que permitimos que se implanten sensores en el cuerpo humano para monitorear y mejorar la salud en la forma más orientada y precisa, ¿Por que insistimos en que prácticamente todo el mundo deba sentarse en silencio y recordar de memoria hechos registrándolos en hojas de papel para obtener el reconocimiento sobre lo que hayamos aprendido?

A pesar del progreso excepcional con evaluación y exámenes electrónicos (e-assessment & e-examination) en algunos países, un reciente incidente en la Universidad de Kasetsart de Thailand ilustra qué tan lejos deben ir otros lugares. Se fotografió a los alumnos allí usando dispositivos “anti-trampa” improvisados de papel.

The wrong kind of innovation

The wrong kind of innovation

Saque sus propias conclusiones – pero sin discusiones, por favor.

Desafíos

“Necesitamos estar listos para un nuevo ritmo de cambio en el aprendizaje”, dice Jim Wynn, Director de Educación en Promethean.

“Estaremos supeditados a que el contenido esté organizado de tal manera que no entorpezca el aprendizaje y también pienso de manera crucial que el contenido deberá reflejar a las pedagogías de la nueva generación y no a aquellas que están diseñadas para la tecnología de lápiz y papel”.

Otro comentario clave que hizo Jim es que el enfoque ‘Autodidacta’ no va a funcionar por sí solo de manera universal. “Tiene que haber un equilibrio entre explorar-y-descubrir y el aprendizaje dirigido por alguien capacitado”.

Dentro del aprendizaje formal, el desafío mayor será la falta de capacidad técnica en el cuerpo docente. En países en desarrollo, donde algunos docentes ni siquiera saben qué es Facebook, el enfoque ‘Autodidacta’ será un desafío verdadero. Los docentes de este nuevo mundo precisarán estar más capacitados en conocimientos técnicos que en la actualidad, y eso será un desafío importantísimo.

Otro desafío es la inercia de los sistemas de evaluación, y el efecto en cascada que tiene en la educación en general.

Uno de los mayores desafíos, sin embargo, es la distribución dispar de acceso a Internet en el mundo. Mientras que es fascinante teorizar sobre la Internet de las Cosas Educativas en países desarrollados, ¿qué sucede con aquellos que quedan atrás aún de Internet de Personas?

De acuerdo con la Unión Internacional de Telecomunicaciones, el 39% del mundo no usa Internet. Mientras que el uso de Internet es de 31% en países en desarrollo y de 77% en países desarrollados.

Slide6

Usuarios de Internet en 2012, datos suministrados por la  Unión Internacional de Telecomunicaciones

Existen varias iniciativas apuntadas a atacar este problema desde distintos ángulos. Por ejemplo, existe la posibilidad de usar antiguas bandas analígicas de TV – VHF/UHF – para proveer acceso a Internet, mientras que el Project Loon está a punto de proveer acceso a Internet a través de globos estratosféricos.

La Internet de las Cosas Educativas requerirá grandes cantidades de trabajo en equipo virtual. Por ejemplo, el proyecto piloto de escuelas ILT (Information and Learning Technology) en el Reino Unido estará dirigido por DISTANCE, un consorcio que incluye al menos 8 organización, entre las cuales hay 3 universidades. De manera interesante, DISTANCE planea crear un núcleo de información digital usando Xively Cloud Services – una plataforma en nube que está creada para propósitos de Internet de las Cosas.

Una Internet de las Cosas Educativas puede ser algo muy lejano para algunos. Sin embargo, del mismo modo que el contenido online está empezando a ser una fuerza revolucionaria para la educación formal en algunas partes del mundo, una nueva era de dispositivos, sensores, pantallas y tecnologías de seguridad y control de muy bajo costo y altamente conectados seguramente hará acelerar el cambio en una dirección muy positiva.

Gracias a Leticia Martinez y Elina Pascucci, Translation San Luis, Argentina, por este excelente traducción. 
August 21, 2013 / mikelloydtech

Internet of Learning-Things

Mass access to the Internet is a mere 20 years old and during this time Web Services have completely revolutionised how we interact – so how will the Internet transform us over the next 20 years?

This article explains how technologies can be architected to allow learning to flourish in the emerging world of the Internet of Things.

Beyond the “Internet of People”

In 2008, the number of things connected to the Internet exceeded the number of people on Earth – but that is still less than 1% of all the physical things in the world today. Cisco’s Internet Business Solutions Group (IBSG) predicts some 25 billion devices will be connected by 2015, and 50 billion by 2020, whilst IDC estimates machine-to-machine communication to grow to 41% of Internet communication by 2020.

IoT represents a major shift in how IT is being used. The personal computer and the ‘Internet of People’ defined the previous IT era. The Internet of Things will be defined by embedded and ubiquitous technologies such as 3d printing, advanced sensing and energy management.

A powerful illustration of this new world comes from wearable clothing, Tshirt OS from Cutecircuit -

Another is the rapid development and spread of 3d printing -

IoT is surging ahead in areas such as manufacturing, medicine and transportation, but what about education? ‘Smart Cities’ initiatives get plenty of attention, but what about Smart Schooling? What about an ‘Internet of Learning-Things’?

To help answer this question, eight schools in the UK will take part in a $1.2m scheme to find out how “Internet of Things” can enhance learning in science, technology, and geography. Students and teachers will be taught to measure and share data – using new Internet of Things technology – in ways that help make learning fun, link directly to the curriculum, and ultimately inform the design of the next generation of schools.

Whilst new-build schools in developed countries routinely use advanced energy and security management IoT technologies, a more fundamental shift is beginning to happen. There is a clear movement towards a Do It Yourself (DIY) approach to technology in the classroom. A great example of this is the such as the Bigshot digital camera kit – http://www.bigshotcamera.com

A key part of this DIY trend is the increasing use of single-board miniature computers, particularly Arduino and Raspberry Pi. Arduino is a purely embedded system, while Raspberry Pi has both embedded and PC functionalities. Both are designed to teach computer science and electronics, and are optimized for managing control technology – i.e. the world of sensors, motors, displays etc (Things).

Lego has had control technology in schools for decades, and Turtle and other technologies from the Constructivist movement have been around even longer. However, Arduino and Raspberry Pi have accelerated the Constructivist approach. To get results from these systems, users have to really understand how technology works, and once children understand the basics, their imaginations and creativity are unleashed. In an age when some ‘children think that cheese grows on plants’ one wonders where they think their consumer electronics come from, so its wonderful to see children becoming increasingly connected to the real world of how things work.

Slide3

Arduino – the worlds’ most popular learning tool for electronics

Arduino and Rasberry Pi are surrounded by an extensive and complex ecosystem of devices and code, and one of the most noticeable devices is Makey Makey. Coming from the same stable that gave us Lego Mindstorms and Scratch, MaKey MaKey is a circuit-board with crocodile clips and wires which allow users to turn practically any object into a key from a computer keyboard. For example, a banana could be used for the letter ‘A’, some plastercine for the letter ‘B’, and a coin for the letter ‘C’. Using this simple principal, a staircase can be turned into a piano, or graphite pencil marks on paper could be used as a game controller.

Neither the Arduino or Raspberry Pi are anywhere near as prolific as PCs or Tablets, and they sell at a tiny fraction of the volume of the consumer and business devices that find their way into Education – tens of thousands a month as opposed to millions. However, unlike consumer and business PCs and Tablets, Arduino and Raspberry Pi have been designed specifically for education – so do they point the way forward?

The cost of a complete class set of Raspberry Pis (around $35 each) with Internet browsing, productivity tools, peripherals, sensors and devices would cost about ½ that of the equivalent class set of Tablets or PCs. However, the big drawback with Raspberry Pi is that they require patience and high levels of technical competency for their setup and operation – users need to become familiar with Linux and command-line prompts. At present the support ecosystem for Raspberry Pi is less than optimally organized for mass proliferation.

To get a better look at what the Internet of Things can mean for Education, we need to look beyond the ‘DIY’ world and think about a complete architecture for “Internet of Learning-Things”.

Towards an “Internet of Learning-Things”

Needs should drive the design of an Internet of Learning-Things – not the other way round. As with all questions about technology, the first question we need to ask is ‘why’? What new scenarios should an ‘Internet of Learning-Things’ deliver? Here’s some examples:

Technology literacy.

In the next 20 years machines will take increasing amounts of decisions. In a world where so much can be sensed or observed, security and privacy take on new meanings and relevance. In a world where systems will be managed increasingly remotely, technocrats will control much more of the world we live in. Its critical, therefore, that children get to understand how this completely new world works, and learn how to build and control it. To achieve this understanding, children need to have the opportunity to build systems that combine computer science with electronics and product design.

Science, Technology and Geography.

The use of sensors, data-logging and basic electronics has long been a part of the UK National curriculum, but with a proliferation of low-cost sensors, devices, drones and kits, its reasonable to expect to see an increase in the increasing use and sophistication in the application of these technologies across the world.

For example, the Parrot AR.Drone2.0 enables students to survey an area using a mobile phone. HD video is shot and stored on a USB memory stick, or relayed directly back to the phone. In one package, Science (e.g. physics of flight); Technology (e.g. OS, networking, control); and Geography (e.g. surveys, observations) can be delivered, in a way that is completely engaging for children of all ages.

The key development in this space is the opportunity for children to learn how to code with Scratch, Python and .NET Gadgeteer offering progressive learning pathway. Scratch even has a way to control the GPIO on Raspberry Pi, enabling students to control a range of devices easily.

Internet of Learning-Things - beginnings

Scratch offers an easy entry into the world of programming

Ubiquitous and context-aware learning.

With devices able to talk more easily with other devices, augmented reality should spill out from museums turning everyday features in the environment into learning objects. For example, point your phone at a building and see what was there of historical significance in the past; point it at a plant or animal and get key scientific facts; use a phone to control a drone and receive live images of your local neighborhood. Kiosks offer another platform for AR, and Lego have a powerful illustration that shows the kinds of scenarios that AR offers –

Learning through everyday play

A market research study by Tangull America indicated that the market for toys with embedded IT is growing over 15% annually, and will grow to sales of US $146 billion by 2015. Examples include interactive puppets, girls’ toys that share secrets, and “real playmates” – which measure changes in facial expressions and use AI to respond. There are huge opportunities to embed learning tools into children’s toys.

Personalised learning

With a greater spectrum of learning opportunities available, and wider use of project-based learning, the potential for more personalized learning increases.

Devices connecting securely to big (and nano) data, content and SRM systems, can enable more and better e-learning services that dynamically adapt to learner’s needs as they evolve.

“The growth of devices connected to the Internet will give learners access to untold sources of authentic data in an environmentally friendly way.  Through their Internet connections on multiple devices, learners will collect these data and work with fellow learners and experts around the world to analyse, interpret and manipulate the information and so contribute in a meaningful way to the development of social and scientific understanding, Learning will become more contextualised, relevant and meaningful as a result.”

Dr Michelle Selinger, Director of Education Practice at Cisco Consulting Services

Anytime anywhere high-stake assessment and exams

Nearly everyone on the planet has sat or will sit an examination or another form of high stakes assessment. Device-level security, built on biometric systems such as facial recognition, offer ways to ensure honesty in exams. As well as local devices, routers could be potentially enabled for exam-standard security in designated ‘Examination Zones’.

Towards an Internet of Learning-Things Architecture

The first technical problem that needs to be solved is that every device on the Internet needs an IP address to communicate with other devices. Currently most Internet traffic runs on IPv4, which allows ‘only’ 4.3bn addresses. The current version – Ipv6 – allows 7.9 x 1028 times more addresses, but IPv6 and IPv4 are not interoperable, so the transition is not going to be immediate and smooth.

The next problem to be solved is the development of protocols for data, network, transport, sessions and applications. A lot of work is underway such as MQTT, a machine-to-machine/Internet of Things connectivity protocol, but as yet there are no real IoT standards – unlike the Internet of People, which uses protocols such as http (for hypertext), and XMPP (for IM, presence and chat).

So, achieving any form of architectural standardization for an Internet of Learning-Things is going to take some time.

However, in the meantime, there are concepts and scenarios that can help. One way to look at IoLT architecture is to split it into functional layers, and map existing technologies and services to those layers:

IoLT Arch

Internet of Learning Things Scenario

A student has learned something significant and has verified the learning through a series of low stakes e-assessments. The student now wants to get full credit for this learning through an accredited examination board (eg, University of Oceania Certificate of Secondary Education). The student finds an accredited ‘Examination Zone’ – a room or an area set up to written examination standard, and monitored for honesty. The student logs onto the examination system, which verifies the user through device level biometric security, then locks down the device to ensure no access to local resources. The student is presented with the questions and types or handwrites the answers. The device pushes an encrypted version of the student’s answers to an E-Exam-Ready Wi-Fi router, (gateway) which relays the data to servers, which also have device level security to verify the validity and security conditions of the student’s responses. From there, the examination response is assessed and credit given in due course, with an encrypted certificate sent back to the student.

Whilst this may seem far-fetched and problematic, it’s worth taking a few moments to compare the kind of advances that have been made in Internet and mobile finance and medicine. For example, diagnostics in medicine is light years ahead of ‘diagnostics’ in education. In an era when we allow sensors to be implanted in the human body to monitor and improve health in the most precise and targeted way, why do we insist that practically everyone on the planet sits down in silence and recall facts from memory on bits of paper in order to get recognition for what they have learned?

Despite phenomenal progress with e-assessment and e-examination in some countries, a recent incident at Kasetsart University in Thailand illustrates just how far other places have to go. Students there were pictured wearing makeshift paper ‘anti-cheating’ devices.

The wrong kind of innovation

Draw your own conclusions – but no conferring please.

Challenges

“We need to be ready for a new pace of change in learning”, says Jim Wynn, Chief Education Officer at Promethean.

“We will depend upon the content to be organized in ways which do not hinder learning and also and I think crucially, content will have to reflect next generation pedagogues and not those that are designed for the technology of pencil and paper”.

Another key point made by Jim is that the ‘Do It Yourself’ approach is not going to work on its own universally. “There has to be a balance between explore-and-find-out and directed learning from a wise head”.

Within formal learning, a major challenge is going to be lack of technical capacity amongst the teaching workforce. In developing countries, where some teachers don’t even know what Facebook is, ‘DIY’ will be a real challenge. Teachers in this new world will need to be a lot more technically skilled than they are now, and that will be a significant challenge.

Another challenge is the inertia in the examinations systems, and the cascade effect that it has on schooling as a whole.

One of the biggest challenges of all, however, is the uneven distribution of Internet Access across the world. Whilst it’s fascinating to talk theoretically about the Internet of Learning-Things in the developed world, what happens to those who are left behind from even the Internet of People?

According to the International Telecommunications Union, 39% of the world is not using the Internet. 31% of the developing world, and 77% of the developed world are using the Internet.

Slide6

Internet users 2012, C/O International Telecommunications Union

There are several initiatives aimed at attacking this problem from different angles. For example, there is potential for using old analog TV bands – VHF/UHF – to deliver Internet access, whilst Project Loon is about delivering Internet access via high altitude balloons.

The Internet of Learning-Things will require significant amounts of virtual teaming. For example, the UK schools ILT pilot project will be led by DISTANCE, a consortium which includes at least 8 organisations, including 3 universities. Interestingly, DISTANCE plans to create a digital information hub using Xively Cloud Services – a cloud platform that is purpose-built for the Internet of Things.

An Internet of Learning-Things may be a long way off for some. However, in the same way that online content is beginning to be a disruptive force in formal schooling in some parts of the world, a new era of ultra-low cost and increasingly connected devices, sensors, displays, security and control technologies, is surely going to accelerate change in a very positive direction.

July 17, 2013 / mikelloydtech

Drop-out in Brazil Linked to Lack of Technology

Its been a long time since the last post – extreme workloads and travel has meant that the blog has taken a back seat. However, its back now - and this time with a much wider range of technologies and topics. In future articles I’ll be sharing my thoughts on how the surge in education technology innovation in developed countries is likely to impact on developing countries. More on that in later articles, but first a report from Brazil -

In a new report – ‘What Young People Think of Schools in Low Income Areas‘ young people complain that subjects don’t make sense, teachers are unprepared, and the curriculum does not include the use of technology.

More than 80% of the young people surveyed reported poor use of the internet to help them study - not surprising given than  less than 50% of the schools in the study had internet access. The biggest challenges are in High Schools where about 1.7 million young people between 15 and 17 years are abandoning schooling.

Angela Danemann, Director of Fundação Victor Civita explains “students will go away because they don’t see the sense in being there. Schools do not respond to their aspirations, and do not use the media with which they are familiar.” Students have to spend a lot of time copying from books.

The study also points to another problem: the lack of relevant content. Most students claim that only Portuguese and mathematics are relevant.

However, there are some schools in Brazil who are fully embracing technology, particularly in the private sector – for example Colegio Dante Alighieri caught media attention recently for their use of Scratch.

NAVENAVE in Rio is a bright, modern learning environment, deeply enriched with technology – but NAVE receives its funding through the CSR arm of a major Telco so it doesn’t represent a widely replicable solution for public schooling in Brazil.

Reforms to the entire way in which public schooling is done in Brazil needs to happen quickly. First steps should focus on the accelerated introduction of technology into schools so that children can at least get access to relevant content. Reforms to education management, import tariffs on equipment, teaching, physical spaces and funding are long overdue.

Loja

O Ensinio A Velocidade Do Pensamento, and the accompanying workshops with Planeta Educacao, were written specifically to enable transformation of Brazilian public schooling. For more information contact mike@eductechassociates.net

June 10, 2013 / mikelloydtech

What is Ubiquitous Learning?

There is a lot of talk at the moment about Ubiquitous Learning. But what exactly is it, should we care, and how should it be implemented? This article by Edutech Associates member Nick Fekos explores these questions.

Ubiquitous computing is a model of human computer interaction in which computer processing has been integrated fully into daily activities, and also integrated into objects with which we routinely interact.  A Ubiquitous Learning Environment enables learning at any time, at any place.

Imagine you are a high school physics teacher and you are teaching concepts like gravity, friction, velocity and inertia. In a classic learning environment, you would be in your classroom with your students at a preset school period. But what if you could teach these concepts by taking your students to a soccer game or baseball game -

Origins of UL  

Mark Weiser from the Xerox PARC Lab ‘fathered’ UL more the twenty years ago. He envisioned three computer waves: mainframes which were prevalent at the time, personal desktop computers which were just appearing, and ‘Ubiquitous’ computing (also known as ‘ubicomp’), as the future. This third step is often referred to as reaching a point where the user is not aware of the computer, whatever form it has taken, but focuses only learning and the related materials.

Weiser identified three types of computer devices:

  • Wearable
  • Handheld
  • Interactive Boards

And their main characteristics would be:

  • Helpers/Servants
  • Quite and Invisible
  • User not necessarily aware of their presence, just the interaction
  • Should not demand attention

Key characteristics of Ubiquitous Learning

The main characteristics of ubiquitous learning are: (Chen et al., 2002; Curtis et al., 2002)

  • Permanency: Learning materials are always available unless purposely deleted.
  • Accessibility:  Access from everywhere as personally required
  • Immediacy:  Wherever a student is, he/she can immediately access learning materials.
  • Interactivity: Online collaboration with teachers and/or peers (chat/blogs/forums)
  • Situated instructional Activities: Learning in context (on-site).
  • Adaptability: Getting the right information at the right place for the right student.

Pedagogical Basis of UL

The main pedagogical premise of Ubiquitous Learning is related to ‘situated learning’ (see J. Lave and E. Wenger, 1991) which is a general theory of knowledge acquisition that is based on the notion that ‘true’ learning occurs in the context of real life activities. In contrast, formal classroom learning implies knowledge abstraction and decontextualization. This abstraction may not be such a problem, but learning in context (as illustrated at the beginning of the article) can certainly improve learning (as does engaging learners in authentic tasks).

Another pedagogical premise of UL would be collaborative learning (involving social interaction), again undoubtedly improving the learning process.

UL in the Context of Today’s and Tomorrow’s Technology 

Today’s technology seems to be trending towards the actualization of the original UL concepts as described by Mark Weiser.  Two out of the four essential components have already been established, and two are just now appearing as described below.

1. Mobile Devices: powerful, personal mobile communication, processing and storage devices

The proliferation of personal mobile devices, starting from smart mobile phones and currently progressing to tablets, has created an important shift in the direction of innovation as an intrinsic aspect of technology.  Perhaps not yet widely apparent in terms of the potential, but the shift has happened and is irreversible.

We now have a hardware device (a tablet) that is highly ‘personal’, similarly to how personal a mobile phone is, but much more personal than a desktop pc or a laptop.

This computing device, although in exchange for a certain degree of ‘personalization’ compared to mobile phones, is able to powerfully communicate, store, process and access information. It has the mobility and autonomy of a mobile phone, but the processing power and screen of a computer, and so it is much more suitable for broader and more fundamental use. Importantly, it provides the opportunity to move away from an ‘Angry Birds’ takeover of mobile technology

2. Cloud Computing

Cloud platforms can now provide the server side ‘omnipresent’ aspects of UL.  Any system with UL characteristics would have to be fully cloud based so as to ensure reliability and seamless scalability.  If design and development is originally geared towards maximizing efficiency by keeping required cloud power low, ‘lean’ cloud applications can be developed that can then be scaled much more powerfully, thus enabling efficient and robust UL.

Intelligent Personal Agents/Knowledge Objects

Given that we now have widespread truly mobile hardware devices, the next step is intelligent personalized software.

In order to truly implement UL and make ‘real’ use of available hardware and software platforms, the implementation of a personal knowledge object/agent that is ‘intelligent’ is essential.  Using Artificial Intelligence Techniques, this object/agent would take part in a ‘learning network’ (i.e. learn automatically) and would contain a rule base from which to make decisions.

This knowledge object/agent would model the ‘learner’ and would be dynamic.  It would have attached processes that would implement functionality like the ability to interface with other objects like itself, or to other non-intelligent objects (e.g. Word document) or to other systems (e.g. SharePoint) or devices (e.g. a telescope).

This interface functionality would be implemented using standardized file formats and access languages, like HTML5, SQL, RDF and OWL which are available today. The latter two introduce the idea of semantic processing, moving beyond the ‘text’ level into concepts and conceptual organization schemes (Ontologies).  Once we move into the conceptual processing realm (Artificial Intelligence), then very important and exciting functionality, like knowledge inference (reasoning) can be provided, which will mark a true technological turning point.

In summary, this platform independent knowledge object/agent would be the main vehicle for implementing Ubiquitous Learning (as described above) as it would know:

  • Who you are
  • Where you are
  • What device you are using
  • Dynamic skills and ability profile
  • Whether it is night or day
  • What time its
  • Who is near you
  • What devices are near you

Although seemingly too ‘futuristic’, the proliferation of wearable online devices will further the implementation of UL. A good example is Google Glasses (http://en.wikipedia.org/wiki/Project_Glass), with many more on the way.

A specific example

A student carrying a tablet approaches a telescope at school. The telescope ‘broadcasts’ its availability to the tablet which then informs the student of this. If the student agrees, the tablet connects to the telescope and sends information through its intelligent personal learning agent about the student, for example age, class, learning profile, interests, past projects and so on.

The telescope then transfers information that is appropriate for that particular student about itself, what it can do, and perhaps showing on the tablet screen what it is seeing right now. Also, the telescope connects to a cloud astronomy app, or to the Microsoft World Wide telescope for added experience and information.

Finally the telescope proposes a small interactive game from which it can assess the student to see what has been learned or not, and then perhaps contacting a fellow student to join the game online.

One thing is certain: the students would enjoy this, and so learning and assessment will have been achieved. This of course would be part of a broader educational strategy that would include other forms of learning, including classic learning paradigms.

Many of the pieces of the UL puzzle are now starting to fall into place, as summarised in the diagram below:

Please contact nikos@edutechassociates.net for more information.

August 24, 2012 / mikelloydtech

A Decade On, Another Tech Bubble Is Set To Deflate – FT

An interesting article in today’s (23rd August) Financial Times by Philip Delves Broughton gives a perspective on innovation and growth in the Tech Sector. Here’s the main points:
“A decade on, another tech bubble is set to deflate”
“After the dotcom bubble popped so spectacularly in 2000-2001, a few glum years for the technology industry have been followed by an equally spectacular run… The social media sector has grown and morphed in endlessly surprising ways… Cloud computing has compounded the speed of technological change… While the rest of the US has wallowed in recession, Silicon Valley and other high-tech pockets have thrived.
However, there is a growing feeling that an 8 year boom is over… those blessed by the Valley’s recent success (e.g. David Sacks, PayPal and Yammer) worry that ‘the gig is up’.
Advertisers love the idea of Facebook but can’t figure out how to use it to sell their products. Those who know the company best seem unduly eager to sell its stock. Apple continues to churn out cash…but is undoubtedly a less exciting company without its late founder Steve Jobs. 10 out of the top 15 iTunes paid apps are games…. most people are using their iPads to play Angry Birds rather than solve the world’s problems.
… this current bubble has addressed the margins of our lives, not the core… and to build a new company in this space, you cannot be trivial. However great, well-executed ideas remain scarce.
‘To create a successful tech company, Sacks writes, you have to find an idea that 1) has escaped the attention of the major internet companies, which are better run than ever before; 2) is capable of being launched and proven-out for around $5m…; 3) is protectable from the onslaught of those big companies once they figure out what you’re on to. How many of those ideas are left?’
Marc Anderseen (one of the Valley’s most powerful venture capitalists) says ‘the big companies are incapable of successful innovation….’ ‘Innovation’, he wrote, ‘would remain the preserve of nimble, disruptive startups’
An era in Silicon Valley is ending, quietly leaching away… Marc Anderseen is right to keep the faith however – there is no point in being in the tech industry unless you grasp that bubbles are inevitable, yet trust that the next one will always be better than the last.”

 

July 17, 2012 / mikelloydtech

New Zealand and China – new approaches to school buildings

Second of two guest blogs by Dr Paul Kelley

In my last blog I considered the ambitious plans of New Zealand to use Ultra-Fast Broadband to bring better education to all its citizens.  Part of New Zealand’s Inquiry into the implementation of 21stCentury learning is linked to consideration of school buildings.

Both New Zealand and China are dedicated to improving education, and their school buildings. In New Zealand, the Chair of the Education and Science Select Committee, Nikki Kaye, makes clear the opportunities for inspirational buildings within the one billion dollar budget for new and refurbished school buildings.  In China, the transformation of cities is astounding – and not just in Beijing and Shanghai. In Hebei Province, Baoding and Shijiazhuang have been transformed to very modern cities with populations of more than 10 million.

Both countries could do with considering the failures and occasional success of English education.  Changes in the education system are reflected in educational buildings- or a lack of change in the case of England.  This is most apparent in the English education system where hundreds of millions of pounds were spent on buildings, most of which, in the end, were simply newer versions of old buildings.  This trend is continuing, and degrading the quality of school environments by failing to future-proof new buildings.

The ambition to implement school designs better suited to the 21st Century was not achieved in England, though the school building in the photograph above this blog shows one of the few that reflected the ambitions of Mukund Patel, the visionary leader of the Department for Education’s  Schools for the Future programme.  This failure to achieve systemic change was not the fault of architects. For example,  Alex de Rijke of dRMM created one visionary design, the Dura- the model for the school above- re- built another (Kingsdale School here), and has inspiring ideas about education buildings.  Kingsdale has the most wonderful ETFE roof, and being in this interior area is an inspiration on its own.

Here dRMM’s Clapham Manor School shows how a stunning modern school can complement a much older building- the Odd Fellows Hall.  Indeed, I would suggest that the school will, in the end, become the more important of the two.  It has the visionary quality that characterizes dRMM as a practice, and the quality of finish that is breathtaking.

New Zealand is fortunate in having a clear link between education and science in its political structure, as new science will help solve some problems in schools.  There is much that is wrong with school buildings- they are usually too small, have poor acoustics, bad air quality, and low light levels –  yet there are solutions based on good science and engineering to resolve these issues.  Having education linked to science may help New Zealand find good solutions.

It would be fitting for New Zealand, with one of the world’s best environments, could create world-leading school designs that enhance learning for students, and the digital network for the country as a whole.   Such an achievement would help the country become a leading example of good educational practice through embracing the future- rather than rebuilding the past.

Follow

Get every new post delivered to your Inbox.

Join 305 other followers

%d bloggers like this: