CLWB @ Bristol Technology and Engineering Academy

 

bteaIn one of our most exciting projects to-date, we are delighted to be implementing STEM at the Bristol Technology and Engineering Academy, a Centre of Excellence for teaching Science, Technology, Engineering and Maths. BTEA is a University Technical College sponsored by the likes of Rolls Royce, Airbus, Royal Navy and GKN.

Over the next year, BTEA will be adopting several of CLWB’s products and programs including:

CLWB STEM Box” – a virtual ‘sandbox’ for STEM coding activities covering each STEM subject area, including:

  • Astronomy
  • Physics
  • Biology
  • Technology
  • Engineering
  • Mathematics

ZEP Island™ – an education game which integrates STEM learning experiences

Electronics  

Games Programming  

Introduction to Coding 

In the Christmas and Eater terms we will also be running whole-school events:

  • Extreme Measures – how to measure everything!
  • Sporting Innovation – design, prototype and pitch new sport products

We very much look forward to working further with the staff and students at BTEA to develop a UK showcase for STEM.

Accelerating STEM in China

China is embracing STEM, and CLWB.org is proud to be partnering with Pearson China to accelerate its adoption there.

Last week we delivered thee events in Beijing:

ASTIE Launch

It was great to be able to present at the launch of ASTIE – Alliance of Science Technology and Innovation Education, and the Summit Forum on the International Science Technology and Innovation Education at the Beijing International Convention Center. The launch ceremony included a great speech by Kevin Kelly, founding executive editor of Wired magazine, who talked about  the “cognification” of the physical world through AI.

We were delighted to present the work that Pearson has been doing in China, which includes projects in all major regions.

1583299432.jpg

Beijing National Day School

As part of the ASTIE launch, we presented a detailed analysis of what it takes to implement STEM programs in schools.

1184228698.jpg

The Beijing National Day School produces some terrific STEM learning, including underwater robotics and automated parcel systems.

Beijing National Day School.png

Pics c/o Beijing National Day School 

STEM Teacher Training Workshops

We then delivered 4 x 1-day workshops covering roller coaster design; environmentally friendly chemical products; designing running shoes; and bridges.

The teachers learned how to implement creative collaboration and design thinking in their schools, and how to use science to inform design decisions.

training.png

Thanks to Niko Zhang, Magic Shi, Rao Zhen, Chris Zhang,  and all those at Pearson China.

Building Bridges in China

We’re absolutely delighted to be working with Pearson China on a STEM project. In June we delivered a three-day STEM training session for Pearson staff at their headquarters in Beijing.

The focus of the three days was engineering and design skills, and implementation planning. Key areas of interest were 21st Century Skills and modern careers. Practical activities included designing and building bridges and bird feeders following the Pearson Project STEM series.

stem_anchor

China Master Trainer Training

Thanks to Joe Lam, Lily Lv, Angela Peng, Qi Liu, Melinda Tuckfield, and the Pearson China STEM team.

Coding and STEAM Workshops in Australia, 2016

Australia coding and STEAM

You wouldn’t put someone in front of a piano and say, ‘Figure out how to play it’. The same can be said about coding in schools.

Following the endorsement of the new Australian Technologies Curriculum, the Queensland Government made coding and robotics compulsory in schools from Prep to Year 10. Its reasonable to expect that it won’t be long before each Australian state will ensure that schools are embedding coding and robotics in the curriculum – which is clearly a very good thing.

But what does this mean for schools, institutions and teachers who are expected to deliver this new curriculum? Whilst Scratch, Code.org and similar packages give students and teachers an entry point, teaching “General Purpose Computer Languages” to students is an altogether different matter.

And its a similar story for the broader push towards STEM/STEAM. Whilst schools are equipped to teach each STEAM subject area, making learning gains from the integrated STEAM approach requires careful thought, planning, development and investment.

To help schools respond, CLWB will be delivering Coding and STEAM (Science Technology Entrepreneurship Arts and Maths) workshops in Australia in February – March 2016.

In October 2015, we ran STEM workshops in Melbourne and Brisbane, and at the Cognitive Acceleration conference in Queensland. We received a clear message at these workshops – “please help us implement the Digital Technologies curriculum – particularly coding – in our schools”. So, we’ll be coming back to Australia in February and March 2016 to run a series of workshops focusing on teaching coding and STEAM.

The CLWB “You Can Teach Coding” workshop will directly teach teachers how to teach coding. The CLWB “Practical Steps to STEAM” workshop will build on our recent STEM workshops and provide opportunities to plan STEAM, and participate in hands-on learning activities.

Option 1: “You Can Teach Coding” @ School

One-day In-School Bespoke Workshop

This is a full-day, in-school bespoke coding workshop for a group of up to 10 teachers paired with up to 10 students. This workshop will not only teach teachers how to code, but also how to teach coding. Participants will be taken from assumed no-knowledge to being confident in teaching with a “General Purpose Programming Language” by the end of the day. The workshop can be used to train student “Digital Leaders” and build a coding culture across the school. Teachers will be given a CLWB Computer Science kit and post-workshop Skype distance support as part of the workshop package.

Option 2: “Practical steps to STEAM” @ School

One-day In-School Bespoke Workshop

This is a full day bespoke workshop focused on creating a STEAM curriculum at your school. In the morning, participants will be lead through Science, Technologies, Arts and Maths subject content. This will be followed by a planning activity aimed at getting maximum learning gains from the STEAM approach, and integrating technology and entrepreneurship into the curriculum. The afternoon session focuses on a practical, hands-on STEAM activity, enabling participants to acquire new skills in Electronics, Programming, Designing and practical ‘Digital Making’. Teachers will be given a CLWB STEAM Kit and post-workshop Skype distance support as part of the workshop package.

Option 3: “You Can Teach Coding” Professional Development 

One-day Teaching Coding workshop

Meet and work with teachers from other schools at this full-day workshop, which will not only teach you to code, but also how to teach coding. Participants will be taken from assumed no-knowledge to being confident in teaching with a “General Purpose Programming Language” by the end of the day. Participants will receive a CLWB Computer Science Kit and 1 post-workshop Skype support, as part of the workshop package.

Option 4: Practical steps to STEAM Professional Development

One-day STEAM workshop

Meet and work with teachers from other schools at this workshop, which builds on the STEM workshop that we ran in Brisbane and Melbourne in October. The workshop will focus on creating a STEAM curriculum within your school. In the morning, teachers will be lead through Science, Technologies, Arts and Maths subject content. This will be followed by a planning activity aimed at getting maximum learning gains from the STEAM approach, and integrating technology and entrepreneurship into the curriculum. The afternoon session focuses on a practical, hands-on STEAM activity, enabling participants to acquire new skills in Electronics, Programming, Designing and practical ‘Digital Making’. Participants will receive a CLWB STEAM Kit and post-workshop Skype support as part of the workshop package.

If you or your school is interested in any of these options please use this form to let us know.

Note: You might be interested in having both Options 1 and 2 in your school over 2 days or you might be interested in sending teachers to workshops covering Options 3 and/or 4 in your area. You may also like to consider having a bespoke workshop in your school and invite other schools in your area to send teachers. Use the “Comments” box to let us know what options you would like.

Innovative Students – Conference Presentation Video

Mike Lloyd’s keynote address at “Building Skills”, Athens. Thanks to all at the British Council, Microsoft and InEdu in Greece.

Drones, Fruit Pianos and Internet of Learning-Things in San Luis, Argentina

Argentina is recognized by the World Bank as one of the top 10 countries with big education laptop projects to learn from, and San Luis – a province in the heart of Argentina – is leading the way. San Luis is home to one of the most impactful education technology initiatives in Latin America, and I was fortunate to be invited to give the keynote for the education track at San Luis Digital 2013 – their annual festival of technology. The presentation was entitled ‘Technical Creativity’ – a whistle-stop tour of the Internet of Learning-Things.

ULP_3988

A key part of the presentation was a demo of the Parrott 2 Drone…

ULP_4163(1) - Copy

This ARM powered drone connects to a mobile phone via a local Wi-Fi link and sends live video feeds back to the phone or to a USB stick, which allowed me to shoot this aerial view of the audience –

I was joined on stage by Alejandro Munizaga, Dean of Universidad de La Punta, who demonstrated his piano playing abilities on a banana keyboard using MaKey MaKey and Scratch.

ULP_4147 - Copy

Slides from the event can be downloaded here –

English version

San Luis Keynote, Internet of Learning Things

Spanish version

San Luis Keynote, Internet Educativa – Spanish

ver

This, the 7th San Luis Digital, saw a crowd of 30,000 people attend a feast of events ranging from hackerthons and robotics competitions, to DJ sets. The event gave a 360 degree view of the social use of technology – health, security, environment, traffic management etc.

Education was very well represented there, and justifiably so. The province of San Luis is well into a One-to-One initiative as part of their investment in education, science and technology. All citizens have free WiFi internet access from anywhere – a right enshrined in law and delivered through WBS-2400 base stations across the entire region.

wifi base station

The government aims to increase maths, reading, writing, science, and ICT skills to prepare future engineering and science professionals. Most children now have a Classmate laptop, and over the next 10 years, the government plans to purchase 10,000 laptops each year until all 104,000 school-age children have a device. According to an IDB evaluation, results have demonstrated notable improvements in language, math, and science achievement following the integration of One-to-One programs in San Luis classrooms.

A notable area of success on display at San Luis Digital 2013 is robotics. A project called “Robotics for All” which is run from the University of La Punta supplies the schools with robotics kits. Each kit has an Arduino board and custom software resembling Scratch runs on Classmates to allow the students to program their robots.

The results are highly impressive. Students from San Luis, represented Argentina and came in the top 5 at the recent Robotics World Cup in the Netherlands. Children as young as 7 explained how they made a model city with working traffic lights, whilst older students battled it out with Arduino based robots.

2013-09-14 18.06.30

The event was completely packed with children eager to learn about the latest in technology and robotics, and sessions lead by the wonderful Gonzalo Zabala –

2013-09-14 18.27.48

San Luis is a shining example of where a combination of clear vision, political will, government backing, organizational capability, and a socially integrated higher education sector come together for the good of all.

I was lucky to be able to visit some schools there including the Isaac Newton and Nelson Mandela schools. Schooling in San Luis certainly lives up to its reputation for being best in class for the creative use of technology.

ULP_5443

Thanks to all the children and teachers that I met in the San Luis Digital and Nelson Mandela schools; Alejandro Munizaga, Marcela Magallanes, Daniel Rivas, Cristian Moleker and the team at La Punta University; Marcelo Sosa, Minister of Education; Silvina Peralta; Gonzalo Zabala for inspiring presentations; Jimena Jacubovich, Hernan Muhafara, Mariana Maggio, Angel Dubon, and Miguel Ayerza from Microsoft; Axel Esteban Seleme for terrific photos; and Leticia Martinez and Elina Pascucci, Translation San Luis, for translation services.

III Forum Microsoft Educacion, Madrid, May 17th

Thanks to all those who came to my workshop and keynote speech at the III Forum Microsoft Educacion, Madrid (#IIIForumEdu). This was a really well organised and well attended event – and thanks to my Microsoft colleagues, especially Juan Ramon Alegret Crespi; Maria Zamorano Alberruche; Irene Ocaña del Rey; Lola Chacon Gutierrez; and Fernando Bocigas Palma.

Here’s a link to the OneNote file complete with on-the-fly annotations:

Schooling at the Speed of Thought keynote

Putting the “i” into Singapore Schooling

With top rankings in PISA and TIMMS, Singapore is the envy of many schooling systems around the world. Whilst ICT is just one of a range of factors that affect learning outcomes, it is a key tool for meeting at least two of the four key desired outcomes of the Singapore schooling system – for all students to become self-directed and collaborative learners.

Singapore was one of the first countries in the world to have a national strategy for ICT in Schools. A succession of well-planned, funded and executed programmes focussing initially on infrastructure and training, and more recently focussing on self-directed learning – has driven effective use of ICT. For details of Singapore’s main ICT projects, see http://wp.me/P16Iyp-46

A great showcase for the effectiveness of this investment is Crescent Girls’ School, a member of the “Future School” programme, and recently awarded the status of Mentor School by Microsoft. Crescent also hosted the CRADLE conference on 1st – 3rd August.

On the surface, Crescent could be any other Secondary School, but a quick glance at the trophy cabinet next to the reception makes it clear that this school is totally committed to high performance. Crescent’s aim is to be at the forefront of harnessing technology to enhance learning outcomes. ICT is used extensively in both delivery and assessment and the school’s 1300 students each have their own Tablet PC. The goal of using ICT is to give students a degree of choice over what they learn and how they learn.

The students engage in a wide range of activities including 2D, 3D animation and robotics; multimedia production; photo-shooting and editing; and development and use of e-books. Particularly impressive is the use of Tablet PCs’ “inking” features for a range of activities including highly impressive manga artwork.

Crescent is moving towards project based learning with a series of “Integrated Secondary Curricula” programmes.

Virtual Reality is used at the school too. For example, in Geography, students experience immersive content showing erosion in a river – a concept that is much easier to grasp when viewing 3d animated rocks being swept along by the current from the perspective of the river bed.

Particularly impressive at Crescent is the way that teachers engage in the content creation process. For example, a complete suite of applications and content have been developed for the Tablet PC that not only exploits the pen and inking technologies but also address a range of different learning styles.

Taking this process further, teachers specified collaborative games to take advantage of the MultiTouch features in Windows 7 and HueLabs’ “Heumi” multitouch (Surface) devices. This means that students can now engage in a wide range of collaborative learning experiences, such as learning to write Chinese. As impressive as the technology itself is the way in which the room in which the Heumi devices are deployed. Here, in the “iCove”, strong colour coding of the devices and the seating, enable teachers to group learners according to their learning objectives.

More recently the school has introduced a biometric system that not only automatically records the students as present but takes their temperatures as they come into the school in the morning, enabling their health to be monitored.

The infrastructure that sits behind Crescent’s ICT provision is highly impressive. The infrastructure foundation is a Campus-wide wireless network with 100 Mbps Broadband. Tablet PCs are stored in steel lockers, and batteries are charged at charging stations.

Approximately 30 on-premises servers perform a range of essential back-end functions from authentication to content management. The Server infrastructure – based on a Microsoft platform – supports a rich tapestry of capabilities including:

  • i-Connect Learning Space – a role based portal for organising student’s learning and activities
  • Pearson’s Write to Learn – a system that helps “automate” the marking of essays
  • HeuX – Huelabs Classroom Management System – with lesson management, digital book library, real-time Communication and Collaboration include notes-sharing and social media; screen monitoring and broadcasting; Presence awareness; attendance; Video Conferencing
  • i-Media – content management system.
  • Interactive books

These solutions are supported by Windows Server; SQL Server; Microsoft SharePoint Portal Server; System Center; Live Communications Manager; Hyper-V and Live@Edu. Much of the learning that takes place at Crescent happens after school hours, and the Virtual Private Network enables students to have 24×7 access. It’s not uncommon to see the portal being used by students at home at 2.00AM.

Singapore schools benefit from very high quality teachers (only 10% of applicants get admitted into teacher training). This is reflected in the staff at Crescent. Principal, Mrs Eugenia Lim, supported by Chief Technology Architect for Learning, Mr Lee Boon Keng, have a highly structured and team orientated approach, underpinned by a strong focus on continuous professional development.

Every hour, the chimes of Big Ben ring across the school signifying a change of lesson. As with Cornwallis School in Kent in the UK, I was totally inspired by what I saw at Crescent but couldn’t help wondering whether a shift from time-based to a performance-based model would better fit such a technology rich approach to learning. Nonetheless, Crescent’s use of ICT is without doubt world leading.

Whilst Crescent Girls’ School is clearly a leader amongst leaders, it’s far from unique in Singapore in the way in which it innovates with technology. Singapore schools benefit from long term, consistent policy and investment in ICT in schooling. With their structured approaches, strong management and deep understanding of how ICT can make learning more effective, Singapore schools look set to continue to show the world how it’s done.

Fortunately for us all, Crescent Girls’ School are “giving back” by encouraging people to visit the school – both physically and virtually.

Thanks to Eugenia Lim, Lee Boon Keng and all the staff and students at Crescent Girl’s School.

Taking the Next Steps – the “Enhanced” Phase

This is the second in a series of articles that aim to help schooling systems develop their technology, the first being “Taking the First Steps“.

There are four distinct phases through which technology in schooling evolves. The first phase is characterized by access. In this phase, giving students and teachers access to computers to improve some aspects of lesson delivery and administration is the main focus. In the next phase, technology is used to enhance existing processes. It’s about providing content and tools to increase learning, organising communications and starting to manage data and information. The third phase is characterized by using technology strategically. No longer is technology considered a “bolt-on”, or “veneer” on top of existing processes – it now helps drive schooling towards strategic goals such as significantly improved learning and better return on investments. In the final phase, leading edge schools use ICT to transform their operations, using it to personalize learning, integrate deeply with the wider community, run extremely efficient administration systems and develop a culture of performance.

Four phases of ICT development in schooling

The “Enhanced” Phase

Goals

The goals of the Enhance Phase of ICT development are to:

  • Increase learning
  • Improve communications with parents
  • Manage data and information

Increasing Learning

In this phase, computers are available in several areas of the school, some in labs, and others scattered in classrooms and other learning spaces. These computers are connected together in a network and key resources, such as content, printers, scanners, and users are managed centrally.

Students use computers as a learning tool – e.g., using multimedia learning packages; solving maths problems; researching; reading from e-books; developing writing skills; learning languages; and developing 21st Century skills.

Curriculum Area Examples

Language
Hyperlinks allow more creativity in narrative construction
  • Word structure and spelling
    • A great example of how to help children remember how to spell individual words is the “Look Cover Write and Check” web application on the Ambleside School site   
  • Composing and presenting
  • Learning foreign languages
    • Bilingual audio books combine rich graphics with spoken word for foreign language learning. Award winning Mantra Lingua have combined traditional print media with a “talking pen”.    
Mathematics
Making visualisations easy in Mathematics
  • Learning from feedback
    • Word processing software now enables students to “word process” maths to clearly show complex formulae, along with 2d and 3d graphs, making it easier to communicate their thinking and get feedback on it. Check out the free Math add-in for Word and OneNote.
  • Creating patterns
    • Students can use Logo software to draw patterns students quickly learn the importance of expressing their commands unambiguously and in the correct order
  •  Seeing connections
    • A software Graphing Calculator can be a great tool for teaching maths when used with a data projector for whole class teaching, or better still when given to students to use.  A lesson can be built up and stored then each stage “replayed”. Check out the free Microsoft Math 4.0 
  • Exploring data
    • Students can design surveys, such as the heights of their peers and teachers, and enter the data into a spreadsheet to learn about averages and correlations.
Science
 
  • Assisting observation
    • Electronic telescopes enable pupils to collect images from different locations on Earth and at different times of the day. Telescope sites also provide learning resources and galleries of images.  
  • Recording and measuring
    • USB microscopes and data loggers can be used in the classroom to observe, record results, plot graphs and analyse data. E.g. see this data logging programme from Kent which explores topics such as: most effective sunglasses; which surface will slow down the car? Who has the hottest hands; where is the noisiest place in school?
  • Providing models or demonstrations
    • Simulating experiments can enable students to experiment with phenomena that may be too slow, too fast, too dangerous or too expensive to experience in school. Check out Crocodile Clips’ Yenka for example.

An essential consideration is accessibility for all. For students with some disabilities, technology can open up new windows of learning opportunities. For a full explanation go to: http://edutechassociates.net/2011/03/08/accessibility/

A fantastic resource exploring different ways in which ICT can be used across the curriculum can be found here: http://archive.naace.co.uk/direct2u/indexbysubject.html

Additionally, worksheets with practical examples and screenshots explaining how to use ICT in Primary Schools are available here

Other resources developed for classroom use by teachers, for teachers can be found in the Teachers Toolbox and here.   

Managing Learning Content

When ICT is implemented, lots of content gets created.  In order to get maximum efficiencies from ICT, this content needs to be organised and managed in a way that means that people don’t replicate one another’s work.

At school level, content can be managed through a file sharing system on a server on a network. For example, Windows Server 2008 enables files to be centrally shared and managed. The “Shared Folders” feature enables file-shares to be created and permissions set, which will allow students and teachers to store their work.

At a more advanced level, content can be better managed using a portal such as SharePoint Server 2010. Combining content management with collaboration tools and powerful search, SharePoint makes information easy to find, share, and use.

Beyond the school, regions or even whole countries are beginning to provide organised learning content, as explored in the articles on SULINET and managing learning content.

In Brazil, for example, Educopedia is a learning content portal run by the City of Rio. Users are presented with a list of all of the elementary and middle school grades and under each of these they can access all the school curricula for each discipline.

Educopedia - learning content access made easy

For example, a teacher can click on a subject area link, and see a content index consisting of the school year course plan which contains the lessons and related curriculum standards.

Educopedia - making it easy to select resources related to curriculum standards

From there, they can download lesson plans with suggestions on how to make the best use of the resource materials available; a list of the skills and competences addressed; a PowerPoint presentation for classroom use; and a quiz with questions about the class content.

Educopedia - access to learning tools made easy

Educopedia also provides users with communication and collaboration functions through live@edu, which provides a mechanism for user authentication.

Parent Connection

The usual way in which schools communicate directly with parents is via “parent evenings” – many parents end up seeing a teacher once or twice a year for 5 minutes. Hardly enough time to say “hello” and “goodbye”. 

Research demonstrates that active parental involvement in educational activities delivers a positive impact on attainment. Technology can be used to connect parents with information regarding the educational progress of their child, and a range of supplemental activities in which the parent can support the learning process. For example, ICT can be used to:

  • Enable parents and teachers to communicate more frequently with each other
  • Identify problems and issues at an early stage and involve parents in rectifying them
  • Give parents the tools to support learning activities at home
  • Provide parents with immediate news about the school and its activities.

At a basic level, ICT can contribute:

  • E-mail news bulletins
  • Digital learning resources to assist the student with homework
  • Educational resources for parents, such as behavioural management guidance
  • Alerts on critical issues such as lack of attendance, dropping attainment levels, behavioural issues, etc
Miami Dade - enabling parents to see how their children are progressing and help with work at home
Miami Dade - essential information about children's school day made easily accessible
Managing Data and Information

Teacher Administrative Tasks

ICT can really help with reducing the time spent on teacher’s basic administrative tasks including:

  • Lesson plans and materials
  • Producing class lists
  • Keeping and filing records
  • Analyses of attendance and results
  • Writing reports
  • Ordering supplies and equipment.
  • Producing formal minutes of meetings
  • Submitting bids 

In Latvia, the Ministry of Education were able to achieve time savings of 30% by deploying SharePoint Server across 100 schools. This allowed them to automate routine grading tasks and reporting, delivering significant time savings for teachers. 

For a report on how ICT helped UK teachers reduce administrative burdens, click here.

Managing Baseline Administrative Data and Information

Whilst different countries have different mandatory requirements for essential data that they expect schools provide, UNESCO (2003) has set out a recommended specification of essential data to collect at the national level from each education establishment.

Data on students Data on teachers and other categories of personnel
Distribution by grade, gender and age Distribution of teachers by level of qualification and certification, by grade and by gender
Distribution of repeaters by gender and grade Distribution of teachers by age and by gender
Number of learners attending double-shift classes by grade. Number of teachers working double shifts
Data on education establishments Number of teachers in multi-grade classes
Number of classrooms Number of non-teaching personnel by categories, age and gender.
Places available in schools Distribution of teachers by level of qualification and certification, by grade and by gender
Education expenditures Distribution of teachers by age and by gender
The budget as part of the overall State budget (budget voted and budget disbursed) broken down by level Number of teachers working double shifts
The expenditures at the local level, of private organizations by level Number of teachers in multi-grade classes

Student Information Systems (SIS)

Schools need to keep records on their students which should, at the very least, include: 

  • Personal – name; address; photo; family contacts
  • Performance – actual and predicted grades; teachers comments
  • Attendance – by day, by lesson, over time
  • Risk profile – learning, social, medical and demographic
  • Intervention history – what assistance and guidance has been given to the student
  • Timetable

Scenarios

Student Access

Providing students with their own laptops for use at home has proven learning impact

A study by the UK Institute of Fiscal Studies in 2009, shows that “learners who use a computer at home for schoolwork could get as much as ½ a grade to their General Certificate of Secondary Education (GCSE) examination results and as much as a term on to their GCSE learning”. No surprise then to see the explosion of national level projects for the wide-scale introduction of ‘personal learning devices’. However, many of these schemes wrongly focus on a ‘blanket’ approach of providing huge numbers of cheap portable PC’s. Unfortunately most of these projects have been driven by getting the most computers for the lowest price, rather than focusing on getting the right device for the learning that needs to be done.

To get the best return on investment a device for students should have the following features:

  • Provide a platform for use of the widest range of productivity, creativity, and communication and collaboration tools
  • Result in users acquiring relevant knowledge and employability skills  
  • Have a display of around 13 to 15 inches
  • Have software that makes learning accessible to all, including those with disabilities
  • Capable of being managed remotely and as part of a managed network
  • Sharable with other users  
  • Battery life should exceed 3 hours under full CPU load with full screen brightness
  • Appropriate ports to allow them to connect to other equipment
  • ·Wireless networking capability
  • Be self-contained and work without needing high levels of internet access once set up
  • Protected from viruses, spyware, and other malicious software
  • Hard Drive encryption for security

One of the advantages of giving students a PC – as opposed to lower specification devices – is that they can share them with family and friends, amplifying the effects of the investment. For example, Mouse Mischief enables students to share applications extending the use of the device.

Classroom

Ideally, students will be able to bring their laptops into the school and make use of them within a managed network, but this takes time, so a more likely scenario in the Enhanced phase is that students use shared computer resources at school. In this phase, there is likely to be an ICT suite with enough computers to take at least 30 children sharing a computer in pairs. Computers will also be found in other learning spaces in the school to support the kind of learning scenarios mentioned above. The computers that were originally used in the school can now be distributed throughout the school, some of which can be used as Thin Clients networked to the Server and/or Windows Multipoint Server.

Of course, computers aren’t the only hardware devices used in the classroom. Digital cameras; video cameras; voting devices; interactive whiteboard tools; robotic kits; digital microscopes; and projectors all have a role to play in the learning process in the Enhanced phase.

School

With ICT across the school, there is need for an organised network to manage ICT services. Learning content, devices, peripherals, access, administrative processes and users. Connecting with a local authority, state or national level learning content service is crucial, and this has to take place within a secured environment. The school will also need to connect to secure Local Authority services within a Wide Area Network.

An important question in this phase is how to manage e-mail. This can be done “on-premises” using server software such as Exchange Server; as a ‘rented’ service such as Exchange Online; or as a free “commodity” type service such as Office 365 for Education. The answer depends on the amount of resource available to manage the service, and the degree of control that a school wants to have over e-mail policy. Increasingly email – along with services such as calendaring and personal file storage – are commodity services that institutions are happy to see moving into the Cloud.

School managed network conceptual design

For a useful document from BECTA that sets out key considerations for school ICT network design, click here.

 Another useful document that considers the full range of devices that a school in the Enhanced phase could use is the Computer Sustainability Toolkit.

Local Authority – MoE

With a system in place for collecting baseline administrative data, there now needs to be a continuous flow of information between schools, the Local Authority and Ministry of Education with budget allocations flowing downwards and reporting on performance flowing upwards. This has to be achieved through a Wide Area Network to ensure the secure transfer of data. Several technologies are available for this including “Leased Line”, “Circuit Switching”, “Packet Switching” and “Virtual Private Networks”.

Wide Area Network between school and "upstream" authorities

As we saw above, the Local Education Authority of Rio City also provides learning content and collaboration services to schools. These can be delivered as a web service from a data centre.

Technical Requirements

The foundation on which the entire schooling architecture is built is called “Optimised Infrastructure”. This provides a scalable, secure platform which can be built on to provide a growing number of services.

Key capabilities of an Optimised Infrastructure are:

Security

The key component without which none of this will work is stringent security and networking protocols. This is needed to protect students and employees from unauthorised users, viruses and unsuitable content. Security systems should automatically identify threats and respond automatically.

Local Area Network (LAN)

Computers need to be connected to a LAN – wired and/or wireless – with a server that controls the network, stores files and enables printing. A classroom might have just a few computers that all the students take turns using, so it’s important that an educational computer be configured just the way the teacher wants.  The teacher shouldn’t have to waste valuable teaching time troubleshooting.  Each PC in a LAN needs to be “locked down” and reset easily. 

Data Protection and Recovery

As ICT becomes increasingly “mission critical”, it’s important to manage data so it can be rapidly recovered.  When infrastructure is fully optimised, recovering information should be as simple as browsing the network. Backup devices are now very cheap to buy and manage, and will automatically run in the background.

Identity and Access management

Identity and Access Management can help organisations centrally manage user information and access rights. It allows administrators to manage each student, teacher, administrator individually by setting their role, access and functional level.  This enables individual users to have information and software tools that are specific to their individual requirements – a personalised IT service.  A directory service holds each user account and its access functions and allows the user to access various systems using the same set of credentials. Authentication can be by various mechanisms such as logon credentials, smartcards, and biometrics.

Desktop, Server and Device management

In an optimised infrastructure, those responsible for the management of networks have the tools to control their IT infrastructure; easing operations; reducing troubleshooting time; controlling quota; password re-setting; provisioning users; improving planning capabilities; and managing mobile devices.   

Integration and Interoperability

A key goal of optimising infrastructure is to integrate different systems so they can exchange data. The advantage of this is that data only has to be inputted once, and then used by multiple systems saving time and money.  Ideally data in Student Information Systems, Teacher Administration and Accounting Packages will interoperate, saving teachers and administration staff from having to re-key in data every time they wanted to update records or produce reports. 

Database Services

Databases are the “engines” of information management. They are used to capture, store, analyse and interpret a wide variety of information, and deliver this information to a range of different applications and devices including servers, desktops and mobile systems. Data includes text, numbers, pictures, video streams, audio content, and geo-spatial information. Not only do databases store data but they interpret, index and enable it to be searched.  

Technical Support

Schooling system networks need to be reliable to encourage user confidence and to support learning and teaching, as well as school management and administration.  This requires access to technical support, which can come from technicians within the school, or from another provider, or sometimes from students themselves. In an optimised infrastructure, schooling systems need to move away from a reactive system in which incidents are dealt with only as they arise. Instead they need to create a more pro-active system where technical support prevents problems occurring and ensures that individual ICT systems are robust and reliable and available when required.

Architecture

Bringing all this together the overall architectural model for a school in the “Enhanced” phase looks like this:  

Schooling Technical Architecture - essential building blocks

Conclusion

It’s often harder to take the second step than the first. Indeed, moving from PCs in a single location to an integrated and managed network has many challenges. The advantages well outweigh the challenges because by developing the school’s technology in this way, students gain access to a wider range of learning opportunities, develop more skills and knowledge. Teachers can use ICT to engage better with students and their parents, and school administration can improve enabling more effective use of resources.

In the next article in this series, we will explore the next phase – moving from using ICT to enhance existing operations to using ICT to drive strategic change.   

Transforming Schooling in Old Buildings – “New Wine in Old Bottles”

A question that I get asked constantly is “how do we implement change in ordinary ‘factory schooling’ buildings”? Last week I was fortunate enough to be able to visit the Cornwallis Academy in Kent in the UK where they are part way through transforming out of the factory schooling model into something much more effective.

Whilst, clearly, there are significant differences between schooling systems in the UK and in other parts of the world, there are many lessons from Cornwallis that are applicable in most countries.

Cornwallis Academy is a large mixed secondary school with 1600 students and is part of a consortium of schools called Future Schools Trust, headed by Chris Gerry.

Results in Cornwallis have improved 16% since 2008 – but the ambitions of Chris, David Simons (Cornwallis’ Principal) and the staff go way beyond getting good academic qualifications. The aim of Cornwallis Academy is for their students to grow up to be happy, fulfilled citizens who can support themselves and contribute to society.

The main drivers for change at Cornwallis were:

  • Developing a work model for students and staff that is representative of the world outside the school
  • Building a team model to share good teaching practice rather than the traditional model of the ‘lonely ‘artisan’ teacher’ 
  • Developing a wider skill set such as social and 21st century skills that are relevant in modern world

These were all built around a relationship driven culture where pupils are part of the learning experience – not just recipients with the teachers in total command of the learning.

‘Attainment’ (i.e. learning performance) and ‘Wellbeing’ are the two main agendas that are used to ensure that students are successful.

  • The ‘Attainment’ agenda aims for 100% pass rate in examinations
  • The ‘Wellbeing’ agenda focuses on emotional intelligence and risk reduction, and recognises that social development helps drive academic success 

An economic model underpins management decisions across the Future Schools Trust consortium. In other words, managing costs and maximising effectiveness of spend are the key management drivers. Through the lense of economics, management at Cornwallis pull three main levers simultaneously:

People

A key aim is to develop more creative teachers through a more modern work environment that breaks the link with traditional approaches and attitudes.

Teachers are required to work in small groups and have choices about how they manage their work.

The school’s management can provide detailed guidance to teachers within this environment if they need to.

They are designing systems that feedback information on performance to both pupils and teachers, and compare performance with averages. Exposing the data in an open way provides “nudges” to performance. There is a focus on improving lesson quality and continuously collecting data on how well pupils are learning.

The school runs a 6 weekly reporting schedule that includes reporting on the development of “soft skills”.  Teaching teams are continuously collecting and reporting lesson data.

Space

Much work has been done to remodel learning spaces within existing buildings and within constrained budgets. Much of this has involved knocking down walls to create bigger spaces and painting – low-budget activities. The aims were to:

  • Impact mood positively
  • Foster group work
  • Provide more space than conventional classrooms
  • Allow some choice of work space
  • Embed technology

The Future Schools Trust has pioneered a new kind of learning space called the “Learning Plaza” – a large space created from knocking down walls between traditional classrooms, or using an existing large space such as an assembly hall.

 

This space was once four separate classrooms. Knocking down walls forces a transformation at relatively low cost.

According to Gerald Haigh,  a UK Education Journalist, “if we believe that transformation involves providing children with a wide range of learning opportunities, among which sitting still and listening to the teacher is one of the least important, then the concept of the ‘Learning Plaza’ immediately looks like an entirely logical solution.

There, children can consult more than one teacher. Teachers can consult each other. Children can work in groups—of any size from two to ninety—or independently, and with their technology to hand.

The figures show that the children who use the Learning Plazas are less likely to be absent from school, and much less likely to be excluded for misbehaviour”.

The Learning Plaza concept – large open spaces, and lots of technology, give staff and students room for creativity and collaboration

A key Change Management principle is “Test Bed Areas”, and through trialling Learning Plazas concept they found that it is 20% cheaper to build schools based on the plaza concept – for a start, there is less brick and mortar going into a new-build school using this approach.

Technology

At Cornwallis, they are not afraid to take the best ideas from the world of business, so they make great use of “Business Intelligence” – BI. This allows them to operate a model driven by measurement.  

Working closely with Microsoft partner lookred, they pioneered the use of CRM (SRM) and predictive analytics to manage student relationships.     

22 different risk areas are identified, and each student has an individual risk profile relating to likely success both at school and beyond. This enables teaching staff to make data-driven interventions, and manage risk. The system is ‘intelligent’ – over time it ‘learns’ which approaches have been most successful. The interventions are informed by the consortium’s work with Yale University on ‘life space’ which looks at how children make life choices and how they might influence these.

Underpinning this, Management Information Systems provide real-time information on how the school is performing.

Technology is used extensively in teaching and learning, with most of the curriculum online now and the intent to have it all online by the start of the 2011-2012 school year. Students and staff have ubiquitous access to devices, and Cornwallis was one of the first schools in the UK to make extensive use of Tablet PCs. The school also runs a “Connected Learning Community” through a Learning Gateway (SharePoint) portal, which provides all stakeholders a unified platform for communication and collaboration.

Students and staff make extensive use of technology, including a Learning Gateway portal

This smart use of technology leads to potential savings across a range of public sector services including welfare, health and law enforcement.

Looking to the Future

 

“Breaking the mould” – where there once were classrooms, there’s now a well used informal learning space, complete with coffee shop

Cornwallis will be moving into a new building in September 2011, with all the advantages of having first trialled new approaches successfully.

In recognition of the lessons that can be learned from the Cornwallis experience, this summer they will host 180 leaders from China who will be there to learn how to bring about transformational change at scale.

Key Lessons from Cornwallis

  1. Economics underpins everything. Financial autonomy is essential.
  2. Leadership training is crucial. You can have all the physical assets you like, but without clear goals and solid management nothing will happen.
  3. Create momentum, and advance on all three fronts – people, space and technology – aggressively and in parallel.
  4. Invest in Test Bed Areas – don’t implement wide scale reform without first trialling it. Start with transforming the model for a single year group.
  5. Focus on the end-user experience. It’s all about building engaging learning experiences around the student, not forcing students to fit the factory model.  

Conclusions

The result of the new approaches at Cornwallis is that learning has speeded up, to the point that the “key stages” – the time taken to progress from one segment of the UK National Curriculum to the next – can be accelerated. The staff at Cornwallis believe that their students could complete Key Stage 3 in 2 years instead of 3; external examinations (GCSE) in 1 year instead of 2; and even university courses in Year 13.  

Whilst I’m totally inspired by what I saw at Cornwallis, I think there is one crucial  piece missing from the jigsaw puzzle – a full shift from a time-based to a performance-based model. This approach is brilliantly articulated by Richard DeLorenzo from the Reinventing Schools Coalition in his book “Delivering on the Promise, and underpins the approach taken by Kunskapsskolan schools. To do this at scale will require “dynamic timetabling”, something that a number of organisations are keen to develop.

Saying that, Cornwallis offer a solid, practical and well thought through model for anyone wishing to make transformational change within hard resource and environmental constraints. What’s more, they generously share their “secret sauce” for the benefit of the wider community.

A Principal for whom I once worked told me that the best way to eat an elephant is “one chunk at a time”. Cornwallis has shown that it’s better to eat 3 chunks  – people, spaces and technology – simultaneously.

Thanks to Chris Gerry; David Simons; Claire Thompson; the staff and students at Cornwallis; Chris Poole and Matthew Woodruff of lookred; Andrew Wild of Manchester City Council; and to my Russian and CEE colleagues, Igor Balandin; Anton Shulzhenko; Alexander Pavlov and Teo Milev, who prompted the visit.