2012 – The Year of Constructive Disruption?

This article is a personal perspective of the key Education Technology trends that we can expect to see in 2012. Whilst not expecting anything as apocalyptic as the Mesoamerican Long Count Calendar theory, my belief is that the world of education technology will see new and powerful disruptive forces in 2012. Whilst there are certainly very challenging times ahead for public sector institutions and the industry that serves them, innovation is accelerating too and new technologies and approaches will offer creative solutions for those who are prepared drive, or at least accept, change.

Mark Anderseen writing in the Wall Street Journal in August 2011 proposes that “Healthcare and education are next up for fundamental software-based transformation”. Education, Anderseen contends, has historically been highly resistant to entrepreneurial change, and is now primed for ‘tipping’ by new software-centric entrepreneurs”. This article explores the forces of technological change that are priming education for ‘tipping’, and what form that ‘tipping’ could take.

Forces of Disruption

As we start 2012 we enter uncharted economic, social and political territories. Frontier Strategy Group, a Washington based provider of market intelligence, predicts that advanced economies will “muddle through the next 18 months with low growth but avoid a major recession”. Gartner, on the other hand, predicts that by 2014, “major national defaults in Europe will lead to the collapse of more than a third of European banks” – which will have significant consequence worldwide.

Gartner also predict that the control of technology is “shifting out of the hands of IT organisations… Cloud, social, mobile and information management technologies are all evolving at a pace”.

Developing markets are exerting an increasingly powerful influence too. According to Frontier, in the next 4 years, Latin America will consume more PCs than in the previous 30 years combined (276 million units). So much for the so called “post PC era”. At the same time we’re seeing the Asia/Pacific region emerge as one of world’s largest markets for devices, with an expected total market sales of more than 6.3 million tablets in 2011.

End-user expectations are rapidly changing too – “end users expect to get access to personal, work, applications and data from any device, anytime and anywhere”. Users and institutions are also demanding ever better power conservation too. The concept of “Big Data” is starting to “alter the relationship of technology to information consumption, as data coming from multiple federated sources in structured and unstructured forms must now be analysed using new methodologies”.

So what does all this mean for education technology? The first thing to consider is the fact that ICT expenditure in education in 2012 is coming off a comparatively weak platform. For at least 20 years now, IT has systematically been introduced into schooling but whilst the value of IT in education is clear, what is also clear is that education has the lowest levels of IT spending amongst any type of major enterprise – IT Spending by Industry Vertical Market, Worldwide. So are we likely to see a boost in the purchase and adoption of IT in schooling worldwide in 2012? The answer to this will depend a lot on spending on education ICT by governments.

Government Spending

According to Gartner, the current decision-making environment is dominated by demands to cut costs while improving operational efficiency and effectiveness. “Government organizations will continue to adopt technology innovation, but mostly in areas where technology is inexpensive” or “support more radical approaches to cost containment”. “By 2013, government financial sustainability will join cost containment as the top driver and constraint for government IT spending”. This isn’t a short-term trend either – “the continuing pressure to cut government budgets is likely to influence spending priorities for the next decade or more”.

Those of us wishing for a tipping point where schooling gets transformed at scale may be in for a wait. For many governments in 2012, “the key challenge will no longer be to transform, but to fulfil their statutory obligations”.

IT investments that enable transformational change “will be limited, especially by the politics of establishing budget priorities and the difficulties of institutional change”. However, these challenges and opportunities won’t be evenly spread, so let’s now look at how these forces are playing out in different parts of the world.

BRICs

Brazil – Microsoft’s Emilio Munaro says “there are more than 198,000 schools in Brazil and 98% of them now have computer labs”. “Tablet usage is growing fast, in many cases accelerated by popular touch enabled apps, but also long battery life which suits environments where electricity outlets are in short supply. However, broadband connection will remain as the challenge for Brazil in the next 3-4 years”.

Russia’s 2012-2014 budgets emphasise long-term development goals and the further introduction of ICT in schools. Expect to hear more about a significant new School of the Future project in the Moscow Region initiated by the Skolkovo Foundation.

The importance of using ICT for improving education in India has been emphasized in the policy framework for over a decade, and 2011 saw a number of large-scale device-lead initiatives. India is home to both one of the biggest IT workforces in the world, but also has incredible diversity in wealth and geography and this has lead to a wide range of solutions for both formal and informal learning. There’s every expectation that use of ICT in education will continue to grow and more innovations will emerge from India in 2012.

Meanwhile in China, mass school computerisation efforts are under way in rural Western China. “It is clear that Chinese support for the purchase of ICT infrastructure for schools will most likely increase greatly in the coming years” according to Michael Trucano from the World Bank.

Europe

The recent down-grading of credit ratings of some major European economies will mean that government borrowing in those countries will be more expensive, giving less room to manoeuvre on public spending. Whilst innovation and investment in ICT in schooling remains strong in many European countries, public sector austerity measures will inevitably cause disruption. However, one mitigating factor is that unemployment and the cost of school dropout is at the top of the agenda for many European countries, so investment in Education ICT may also be seen as a way to boost economic growth.

According to Mark East, General Manager for Microsoft’s Education Group “One thing is for sure; human capital is a nation’s greatest asset and Education will remain a priority investment area for most Governments”.

Asia

South Korea – already top of PISA and digital literacy skills tables – is surging ahead with a $2.4bn Education technology plan, now in its third phase of deployment. Many middle school and high school students now download and complete e-learning classes via their portable multimedia players as a matter of routine.

In Singapore, the government is driving technology lead innovation, and recently announced plans to digitise testing and examination systems.

USA

There’s a sense of big appetite for change in the USA, driven by a collapse in adequate levels of funding for schooling and the rapid growth in virtual schooling and online learning resources. The Department of Education is executing against a strong National Education Technology Plan and the USA is a hotbed of innovation in the education consumer space.

Teacher Shortages

The world urgently needs to recruit more than 8 million extra teachers, according to UN estimates. A worldwide shortage of primary school teachers threatens to undermine global efforts to ensure universal access to primary education by 2015.

According to the Guardian newspaper, at least 2m new teaching positions will need to be created by 2015, and an additional 6.2 million teachers will need to be recruited to maintain the current workforce.

This means that the 55m practicing teachers worldwide have increasing demands on their time as countries compete to raise education standards and develop the skills required for economic growth, at a time when the profession is short of the optimal workforce by 15%. As pointed out by Professor Sugata Mitra recently, “quality teachers simply don’t exist where they’re needed most”. “Talented teachers tend to be drawn away from relatively poor areas due to offers of better jobs or higher incomes. For these reasons, “we need new methods of learning”.

Whilst it’s clear that ICT can help governments achieve their education aims, the increased demand for teachers with ICT skills is clearly outpacing supply.

Consumerisation

Rapidly increasing availability of access to online learning sources, coupled with social networking is opening up a spectrum of low cost learning opportunities for students both inside and outside the classroom. MIT Open Courseware, Kahn Academy, University of the People, BBC Bitesize, Mymaths, Tutorhunt etc. all offer a supplement to teacher-lead “instruction”. Sugata Mitra’s “Hole in the Wall” project goes even further, offering learning where there simply are no teachers.

According to sources quoted by Larry Cuban of Stanford University, the worldwide market for self-paced eLearning products and services reached $32.1 billion in 2010 (about 50% of what formal education currently spends on ICT). The five-year compound annual growth rate (CAGR) is 9.2% and revenues will grow to $49.9 billion by 2015.

Clayton Christiansen, in his book “Disrupting Class” predicted that virtual schooling will force massive changes to formal schooling systems. By 2008, online enrolments for virtual schooling in the US had risen from 45,000 in 2000 to over 1 million, and there are no signs that this is slowing down.

A key component in consumerisation is social networking, and we’re seeing a lot of innovation in this space. For example, Microsoft’ recently announced So.cl which integrates search into the social learning experience.

Shifting Power

More Learning Please

Rising youth unemployment in Europe and the Middle East, globalisation and growth in developing countries are all fuelling the need for more knowledge, skills and competencies.

“People leaving our schooling systems, more now than ever, will need to be able to respond positively to the opportunities and challenges of the rapidly changing world in which we live and work. In particular, they need to be prepared to engage with environmental, economic, social and cultural change, including dealing with the effects of global warming and the continued globalisation of the economy and society, with new work and leisure patterns and with the rapid expansion of communication technologies.” (UK Qualifications and Curriculum Authority).

In the same way that there is limited funding available from the public purse, there is also limited time in the school day into which to squeeze the curriculum. Again, the implications are clear – more effective learning has to be implemented.

Mind the Engagement Gap

Commercial websites are increasingly become social sites, leaving a shortage of people to deal with social engagement on the scale required. The same pattern is happening in schooling where the teaching workforce does not have the capacity to deal with the explosion in the demands for skills and competencies, and the increasingly availability of online learning. As students’ technology capacity grows relative to that of teachers, an engagement gap between students and teacher is set to widen.

The answer to the engagement gap in commerce is the increasing use of “bots” and many sites now have fully or semi-automated live chat. In 2010, the average user of Facebook has 120 to 150 friends. Some of these “friends” are not real people, and many users find this to be quite natural. Gartner predicts that by 2015, 10% of your online “friends” will be nonhuman. It’s a reasonable bet that some of these online friends will be virtual tutors.

What will the answer to the engagement gap in schooling look like? Professor Sugata Mitra explores the theory that, given unrestricted and unsupervised access to the Internet, groups of children can learn almost anything on their own. Few – myself included – would advocate this as a universal approach to schooling, but it’s clear that technology enhanced independent and social learning offers answers to both the lack of teachers and the need for more effective learning.

Irresistible Forces Meet the Immovable Object

So the forces of consumerisation, increased learning requirements, and the demand for relevant ways to engage are beginning to weigh heavily on institutionalized learning.

According to Gartner, “the homogeneous learning and technology environment of the last century is fading fast. Moreover, the ivory tower mentality of education agencies is disappearing to reflect changing needs and values”.

These irresistible forces, however, will continue to meet an immovable object – schools. Whilst the nature of schooling will surely change, children will still be going to places called schools run by teachers well into the foreseeable future. Schools have responsibilities beyond academic learning. Parents and voters want schools to socialize students into community values, prepare them for civic responsibilities, and get them ready for college and career. Technology enhanced independent learning alone cannot meet those demands.

Big challenges for 2012

So the 2012 landscape will be dominated the necessity to provide more learning at less cost, against a backdrop of human capacity shortages and students faced with greater consumer choices.

Schooling IT leaders must balance the demands of supporting today’s environment, addressing the demands of the education stakeholder community, and preparing for a technology-driven transformation of the education ecosystem.

So what, then, are the big education technology challenges for 2012?  Its my belief that there are three big problems to crack, and that in 2012 market forces will drive progress in each of these areas.

1. ROI

2. Personalising Learning

3. National Education Networks

ROI

I start with ROI because in times of squeezed budgets it’s essential that both institutions and suppliers are able to identify which budget lines have the greatest and least impact on the learning “bottom line”, and identify where investments will have the most positive effect. At the very least, I’d expect it to at least become more acceptable to talk about ROI for investments in education technology. As discussed in detail in this blog – Lets Talk About Money – the idea of at least attributing “cost per unit learned” to investments should have become standard practice by now.

Personalised learning

For at least 10 years, the goal of personalized learning has been talked about, pursued as a strategy, dropped when found too hard to execute, and then talked about again. So, could 2012 be the year when personalizing learning at scale begins to take off?

I’m optimistic that we’ll see some progress in this space this year, because Personalising Learning can address so many of the problems that schooling currently faces. When we also add the learnings that we now have from games-based-learning, neuroscience and Artificial Intelligence (see Artificial Intelligence in Schooling Sytems) we seem to have all the technical building blocks in place. Personalised Learning also fits the trend towards consumerisation really well.

Think of Personalised Learning from a student’s perspective as “My Learning My Way”. To get to My Learning My Way, there are several key elements:

My technology my way

As discussed in detail in the BYOD/C article, the emergence of low cost technological supplements and alternatives to institutional “instruction” is growing at an increasing pace. Yes, the state will always have a role in providing a “base level” of appropriate technologies for learners, but the reality is that students across the world are “doing it for themselves”, learning on their own devices using software and learning services of their own choice.

The biggest challenges in this area are to ensure equality of access to opportunties, and stopping the adoption of “lowest common denominator” technologies, learning applications, services and devices.

My pathway my way

Learning can be said to be ‘personalised’ when students have a unique set of pathways through their learning. Clearly, at early stages younger learners need a lot of adult support with learning decisions, but as learners progress through their schooling they need to become more independent – and that independence can be supported with technology. Personalised Learning is a characteristic of the Transformed Phase of schooling and discussed in the “Transformed Phase” of this blog.

For personal learning pathways to work well, three key problems need to be addressed:

Firstly, assessments – both high and low stake – need to be ported into the electronic domain. Increasingly we’re seeing this happen. In Norway, for example, national tests at level 5, 7 and 9 ++ and exams in upper secondary and now administrated electronically.

Secondly, data from assessment and ongoing learning tasks needs to be used to make effective decisions about what learning tasks need to be undertaken, and when. The resulting learning pathways need to be challenging but achievable and “in tune” with how individual students learn.

Thirdly, the difficult problem of Dynamic Timetabling needs to be solved. This is where the time students spend in formal schooling is determined not by a pre-determined matrix of subjects and timeslots allocated according to age and classes, but by a system that matches their precise learning requirments against the resources needed to meet these. The problem can, to a point, be addressed through CRM, but it will take an evolution in schooling management techniques as well as technology developments to solve this problem.

My content my way

The model of purchasing standard textbooks for all students must surely come under more intense questioning in 2012. Companies such as Triba Learning from Finland are offering fascinating glimpses of new models where data and algorithms are used to generate value. Triba uses data to segment students into increasingly granular groups that exhibit similar learning dispositions. Powerful algorithms are used to analyse how they best learn and select appropriate content. School districts save money through using this system to purchase only the content that best fits the learner’s requirements – as opposed to having to buy large sets of books which may only ever be partially used.

Content itself needs to change radically too. “Our high school kids are fantastic teachers,” said Professor Harry Kroto, talking at NEST 2011 about the GEOSET project, in which students record lectures that can be freely accessed online. Creating content leads to more learning than merely consuming content, so “atomising” content into building blocks that can be reassembled into customised materials by students and teachers is a clear way forward.

Whilst content and learning sofware has evolved to accommodate visual, auditory and kinesthetic learning styles, the next frontier is the use of neuroscience to make learning more engaging. We are learning more about the science of learning, and how to drive the motivation to learn. Emerging game-like learning software makes use of the individual’s natural reward system which helps them to learn which action has the most valuable outcome. Software can be designed to emulate a teacher who constantly adapts to current learner understanding. Thus software can enable far more effective learning than is often possible through one-to-one teaching.

My data my way

The standard way of looking at student related data is that it should be “owned” by the institution. But to get to truly personalised learning there needs to be a paradigm shift – one that is prepared to accept that the ownership of the data resides with the student, and their parent or gaurdians.

A similar idea sits behind Microsoft’s “Health Vault”. This CRM based solution enables individuals to store their own health records in the Cloud and then grant access to these records to trusted people – doctors/relatives etc. Health Vault has evolved into a platfrom with an online marketplace for applications and even USB devices that can be used to monitor and manage health issues. This idea isn’t new in education though – e-portfolios have long been based on similar principles.

For school students, it would be essential to integrate personally held data with the data held in formal schooling institutions. According to Stephen Coller from the Gates Foundation, its not possible to build large scale data driven solutions without going through formal schooling data systems and subsystems. For example, to integrate with class rosters, enrollment systems have to be accessed. According to Coller, there needs to be:

  • A unifying middle layer that eliminates the need for solution providers to integrate with each school’s systems

or

  • a trust framework and ‘digital locker’ that gives users control over their own data and records

and

  • A badging or certificate framework that spans formal and informal learning

When thinking about large scale data systems, the question is whether exisiting data is sufficiently rich or accessible enouhg to justify the huge efforts required to get more than a basic dataset shared between the stundent and the institution, or whether it would be easier to rearchitect the entire system from scratch based on the new paradigm.

Either way, a core problem which needs to be solved in this area is “Micro Federation” – ie the concept that a student with their own “digital locker” can grant and control access to that data to trusted 3rd parties. The benefit to the institution is access to data to help decision making at micro and macro levels. The benefit to the student is having their learning supported in ways that may have been difficult to achieve otherwise. To achieve Micro Federation, there are some key areas that need to be addressed including:

• Privacy

• Security

  • Authorization
  • IDs and authentication
  • Encryption

• Transaction models

• Interaction models

• Interconnection technology

• Interfaces

National Education Networks

Greater personalization requires improved interoperability between data, content, assessments and applications. But to scale personalised learning, we need to be able to solve big problems in the areas of data management; decision automation; individualised learning pathways; and content. To do all this requires National Education Networks (NEN). The purpose of an NEN is to:

  • Improve data flows for the benefit of students, within and between end-users and schooling institutions, regionally and nationally.
  • Provide a stable platform for learning and innovation based on interoperable systems
  • Reduce the technical burden on schools, allowing them to focus on the use of technology in teaching and learning rather than its management

Few countries have built NENs, but the UK is one country that has. In 2004, the BECTA – the British governments ICT agency – produced detailed plans for a national level network infrastructure for schools. This became the National Education Network – http://www.nen.gov.uk/

So what are the key problems that need to be solved in building a National Education Network? Firstly, a National Education Network should have three architectural layers:

  • Services
  • Interfaces
  • Infrastructure

Services

The services layer should define the outcomes required from the NEN. Key questions that need to be addressed are:

  • What services do we want the NEN to deliver?
  • To whom and when?
  • At what costs and return on investment?

This leads to functional decisions about three key elements – interfaces that expose the functions of one system to other systems; what operations are performed within a service function; what messages are inputted and outputted from service operations.

A well-designed NEN should provide a services platform on four levels:

  • Connectivity services linking all elements of the model together, safely and securely connecting end-user stakeholders to the internet and wider educational community
  • A marketplace for institutions and individual students to purchase and consume learning services including content; personalised learning management systems; and management information system
  • Data services including data warehousing, management information systems (MIS) and a range of data mining tools
  • An R&D “sandbox” using anonamised data about learning to enable software entrepreneurs to build ever more effective personalised learning solutions

Interfaces

An interface is a shared boundary across which information is passed. In an ideal NEN students own the data, and share selective parts of it with schooling systems, Local Education Authorities/Municipality/State, the Ministry of Education, parents/guardians and ultimately prospective Higher/Further Education institutions or even employers. Different stakeholders would need different information – the Ministry of Education, for example, would need much less information than the school.

For data to move effectively across the system, trust relationships need to exist between these boundaries. In a NEN, interfaces can be specified to manage the flow of data; monitor status; manage assets; and even control devices.

Defining interfaces trust relationships, and data exchange methods across a large population may be complex, but it offers huge potential in terms of increased effectiveness and cost savings.

Infrastructure

The Physical Network component of an NEN has multiple layers and requires at least the following to be designed:

  • Infrastructure
    • Access models – radio and television, digital devices, computing
    • Topology, IP addressing, naming
    • Plumbing, traffic routing
    • Storage
    • Network control
    • Security
  • Establishing Physical Security
    • Creating a secure physical boundary for critical communications equipment
    • Protecting the Network Elements
      • Securing routers, switches, appliances, VoIP gateways and network devices define network boundaries and act as interfaces to all networks
      • Designing the IP Network…
        • … based on sound IP network design principles
  • Directories and Control
    • User directories
    • Asset catalogues
    • Identity management
    • User management

A comprehensive design blueprint for a National Education Network is the BECTA specification for the UK’s NEN.

NENs for Personalised Learning

The ultimate goal for a NEN is to enable personalised learning at scale and cost-effectively. For that to happen several “moving parts” need to synchronise. At the start of the cycle, data about learning is used to present students with appropriate learning opportunities through tailored content. Students progress through these tasks through individual pathways. As they do, they generate data and different aspects of that data are used by different stakeholders for different reasons. The data is managed and communicated via the National Grid for Learning, and the marketplace platform within the NEN acquires appropriate content for the learner’s on-going learning process, starting the cycle over again.

Standards

Take a NEN with interfaces across the 5 boundaries described above. If each boundary handles 10 different types of data, then roughly speaking there are 105 (100,000) “sub-interfaces” that have to successfully connect to make the system function properly. The complexity increases dramatically when you add complexities such as data formats and exchange methods.

To reduce complexity in NENs, standards are a key consideration. I say a “consideration” rather than “the answer” because there are two different perspectives to take into account.

From a vendor point of view, standards can get in the way and increase costs. Typically, solution developers will build large scale Schooling Enterprise Architectures up to LEA or even state level, but rarely at national level. At these levels vendors generally find it easier to not have to conform to standards as this gives them freedom to design information systems to their own specifications and re-use IP and technologies from other similar projects.

From a NEN commissioning body (e.g. Ministry of Education) perspective, standards that are open and not driven by vendors are a key way to reduce their overall costs and complexity. For example, a NEN will require the integration of separate datacentres at municipality/LEA/State levels. Without standards, proprietary interfaces must be reworked for each new system added. It is simply easier if everyone does it the same way; so each datacentre should require just one standard interface which:

  • Standardizes the dialogs, messages, and data elements
  • Standardizes user interfaces to the system
  • Allows a single external interface with different agencies, enabling cooperation and coordination between them

Standards need to deliver value at both macro and micro levels. Standards that are developed at the national level may include information that local systems will not use. On the other hand, standards may need to be supplemented with additional information to meet local needs.

A noteworthy national level IT infrastructure for public services is the National Transportation Communications (NTCIP) system in the US and there is much that is transferable from NTCIP to the design of NENs. NTCIP is a set of standards for interoperability between computers and electronic traffic control equipment that covers the US and is now being adapted for implementation in other countries. A key to the success of this is system is how standards are integrated into the model. For example, for a system to be a part of the NTCIP “Management Information Base”, a set of mandatory objects are required, but to enable local adaptation, specified optional objects are permitted. To minimise cost, risk and complexity, the NTCIP Management Information Base is public, not proprietary.

Education has a long way to go to catch up with how NTCIP uses standards.

Key challenges in building NENs

There are many major challenges to building NENs including:

  • Selecting and building an appropriate framework of international standards and prescriptive methodologies, and ensuring public ownership of the overall model
  • Data aggregation and interoperability
  • Reconceptualising NENs to put the student at the centre

National Education Networks are certainly complex, but with the methods and standards now available, and the overall gains that they can bring there is every reason to expect to see an increasing number of national level education network projects in and beyond 2012.

Technology Trends in 2012

IT organizations must balance security against access, and meet the growing expectations of individuals who are more technology-savvy than ever before. As consumerisation grows and budgets get cut, IT leaders in education are becoming increasingly open to leveraging personally owned devices and external Web 2.0 services as well as to delivering information and services beyond their physical campuses.

This is shaping what IT and digital services will increase in significance in 2012, as summarised in the table below:

Enterprise computing Consumer computing
Wireless aaS Social-Learning Platform for Education
Federated Identity Management Windows-Based Tablet PCs
SIS International Data Interoperability Standards E-Textbook
Hosted Virtual Desktops Social Media in Education
Cloud Email for Staff and Faculty E-Portfolios
Unified Communications and Collaboration Mashups
CRM Lecture Capture and Retrieval Tools
BYOC strategies Media Tablets

At the NEST conference in Hong Kong, Facebook Co-founder Chris Hughes pronounced that “the textbook is dead”. “In the next five to seven years, the textbook is no longer going to be the basic building block of education.”

The challenge for education institutions in 2012 is to treat the pending changes as an opportunity and navigate into the future, making sound decisions that focus on learner achievement, and develop strategies and adapt organizational structures that embrace a world of choice.

The challenge to the education technology industry in 2012 is to ramp-up proofs of concepts that demonstrate how technology can viably personalise learning on a large scale.

A Chinese proverb says, “May you live in interesting times”. In the world of education technology, 2012 should prove to be a very interesting year indeed.

Happy New Year!

Let’s Talk About Money

Working with some European countries recently has brought the issue of money – and how it relates to technology – into sharp focus. This article argues that in times of shrinking budgets, there is a strong case to make more, not less investment in ICT.

Should money be spent on ICT in schools at all?

With education budgets under pressure, and often having to cover not only schooling but broader children’s services too, a question that seems to be increasingly raised is whether money should be used for ICT in schooling at all.

To those of us involved in ICT in schooling, the answer seems an obvious “hell yes”. However, to a senior decision maker, ICT is usually just another cost. Of the $2.4trn spent on schooling every year, ICT is just a “drop in the ocean”. To someone looking at budgets at a high level, ICT will be buried amongst many other budget lines, not least staffing (sometimes as much as 80% of whole budget) and physical buildings – the schooling “estate”. Regardless of budgetary conditions, it’s always important to consider how ICT can be used as a strategic asset.

Whether choosing to invest in more staff, the physical environment or ICT, the decision making process should be set in the context of measurable, desired outcomes. Only when the required outcomes are known does it make sense to think about where to make or cut investment.

The key areas where investments in schooling should be expected to have outcomes and impacts are:

  • Academic — qualifications; acquisition of 21st Century skills; test results; and “Value Added”
  • People — high performance; organisational health; staff retention; staff qualifications; stakeholder satisfaction
  • Operational Excellence — efficient and effective processes; fit for purpose environments; spaces that are appropriate for effective learning; demonstrable value for money

ICT can impact deeply in all of these areas, enabling each type of expenditure to have maximum effect. Let’s now take a look at some of these in more detail.

Academic Attainment

A big question is whether – and to what extent – ICT can raise student attainment. Isolating the impact of ICT from all other contributory factors can be problematic. However, positive relationships between ICT use and improvement in subject-related learning have been found in several subject areas.

In 2006, for example, a research project conducted by Becta (the British Educational Communication and Technology Agency) investigated the effects of ICT on educational attainment, based on evidence gathered from 60 schools in England. This research analysed the relationship between the pupils’ performance in National Tests and GCSE’s (secondary school exit examinations) and their reported use of ICT at three age levels (11, 14, 16). The study found evidence of a statistically significant positive association between ICT and higher achievement, particularly in national tests for English, Science and Design & Technology.

The graph below depicts the relative positive impact of ICT on certain subjects.

A second UK project – “Test Bed, 2002 to 2006” – confirms that technology may lead to an improvement in test performance relative to ‘benchmark’ comparators. Test Bed schools showed higher learning performance in English – 4.68% vs 4.09. They showed significant comparative increases in mathematics test scores. Additionally, the number of secondary pupils achieving A to C GCSE grades had significantly improved over the course of the project. The Test Bed project showed that just one year after technology had been implemented, there was improved attainment. From this report, it is possible to quantify the effect of an ICT investment and to show the cost of achieving an improved outcome.

However, sceptics could argue that the UK, which has traditionally spent significant amounts of money on ICT in schools, declined in the PISA international ranking in recent years – hardly demonstrating good evidence of improved attainment associated with significant ICT spend. Perhaps then we should look at a set of countries that lead the world in schooling attainment – the Nordic countries.

E-learning Nordic 2006 shows that ICT has a positive impact on improving the pupils’ learning. A positive impact of ICT on teaching is seen on pupil engagement, differentiation, creativity and less waste of time. The study also shows that the preconditions for using ICT for knowledge sharing, communication and school-home co-operation are beneficial.

Echoing these findings, the 2006 OECD study entitled ‘Are pupils ready for a technology rich world?’ tells us that there is an association between the length of time students had been using computers and their PISA Mathematics scores.

For additional background, look at “The ICT Impact Report – A review of studies of ICT impact on schools in Europe” from European Schoolnet.

Despite these pieces of evidence, the truth is that there is very little hard research clearly demonstrating that ICT directly improves learning outcomes. The direct cause and effect of technology on test scores and exam results is very hard to pin down. Some would even argue that this is no longer even a relevant question – what matters more is that if schools see the value of students acquiring 21st Century Skills then ICT is an undeniably crucial tool.

Whilst it’s fairly clear that ICT makes learning more effective when properly implemented, it’s by no means easy to quantify the degree to which this is the case.

People

Clearly, people are any organisation’s biggest asset, and ICT has a role to play in terms of helping mangers set, manage and evaluate objectives and performance. Dashboards, KPIs and portals all have a role to play in helping staff align to organisational goals, and perform at their best and in ways that best serve the objectives of the organisation. Organisational health can be monitored through ICT systems, helping to reduce staff turnover – which is estimated to cost 1 year’s worth of salary for each person leaving an organisation.

Continuous Professional Development is another area where ICT can play a role. In Maryland, for example, it used to take 18 months for a teacher to receive a certificate after completing training. After the introduction of a CRM system, that time was reduced to a few days.

Finding out if stakeholders are satisfied with a system is made much easier with online tools such as e-forms and surveys. Analysing the data and discovering areas of dissatisfaction is again made easier through the use of ICT.

Operational Excellence

A concept worth exploring is the use of analytic systems to precisely target investments to where they needed, and then understand the return on that investment. Imagine a schooling system that has extremely low Science scores. One approach could be to throw resources across the entire system in a National Science programme aimed at raising Science standards generally. A better approach is to use analytics to deeply understand the causes of the problem and then to use this information to remediate it. Out of the thousands of potential contributory factors, analytics could help identify those factors that have the biggest impact on the results, and enable much more precisely targeted resourcing to address those issues. The net is raised standards at a fraction of the cost of the “scatter gun” approach.

A lot of money can also be wasted where future conditions are inaccurately forecast and planned for. Predictive analytics has role in:

  • Predicting the needs of students, teachers and stakeholders.
  • Modelling possible local, regional, state, or national trends that will affect schooling and the  programmes offered
  • Forecast workforce, resource and budgetary requirements

Finally, energy savings can be made easier with “smart environments”. ICT enabled security services can also help reduce costs.

Saving Money With ICT

So let us now go deeper into the operational side of schooling and further explore where ICT can directly save money. After all, the implementation of ICT in other sectors has mainly been in the pursuit of driving out costs. Schooling is different to other sectors, but there is no reason why the rules of high performance in other sectors can’t be applied here.

Administration

Administrative costs can be enormous; particularly where schooling is managed centrally and detailed reports and strong compliance is required. Technology can save time and money by making processes such as reporting, timetabling, student record keeping, examination, attendance, HR, and financial management faster and more efficient.

At each step of the administration process – Monitoring → Analysis → Planning – ICT can cut costs through decision support and decision automation enabled by automated workflows.

Areas for both cost savings and increased efficiencies include moving from paper reports to KPIs and dashboards.

Technology also has fantastic potential for easing the teacher workloads. For example, assessing students is a labour intensive process for teachers everywhere, but technology can play a role in helping teachers and stakeholders understand students’ knowledge capabilities and skills. In a Virtual Learning Environment, for example, students can undertake learning tasks which can be assessed and reported on automatically.

Effective resource management can lead to greater efficiencies especially where a Resource Management or Enterprise Resource Planning (ERP) system is used. ERP systems includes financial, supply chain and human resource management sub-systems, together with analytical and programme management tools.

Enterprise Resource Planning can be used for:

  • Financial management
  • Supply chain management
  • Business intelligence
  • Performance management
  • Project management
  • Human resource management
  • IT management

Shared Resourcing

Many services consumed by schools can be aggregated, and Cloud services are accelerating this. Managing content, data, interventions, HR, IT support, specialist learning services, procurement and many other services are often better managed by consortia. Clearly, areas such as leveraging aggregated purchasing power can have an immediate financial impact. ICT – particularly communication and collaboration technologies – can enable consortia to be easily formed and flexibly managed.

Imagine the savings that could be derived from an aggregated set of Cloud services that enable a large number of schools to purchase goods and services through a simple mechanism for procurement, billing, supply-chain, and accounting.

Inspection

Sending inspectors to schools is an expensive method of quality assurance that involves checking work after the event, identifying sources of non-conformance, and taking corrective action.

This is a comparatively inefficient method for achieving a basic level of quality. It requires the employment of people to check on operations, and inspection doesn’t add value to the service – it merely adds to the cost. ICT can be used to enable schools to self-inspect, and address quality and performance issues. This enables a smaller face-to-face inspection team to ensure that schools are aligned, complying with reporting guidelines, and dealing with the exceptions.

Examination and Assessment

Public examinations are a huge industry. In England, for instance, PricewaterhouseCoopers estimated that the cost of running the examination system in 2003-04 was $915 million. (QCDA, 2005).

ICT can open up new ways for students to demonstrate and authenticate their understanding, skills and abilities, at comparatively low cost. E-portfolios, distance peer assessment, electronic testing, assessments and video presentations are all readily accessible to many students. ICT can be used to go beyond “rear view mirror” assessments, as it makes it possible to access and analyse student achievement data on an on-going basis, and take corrective action before high stakes examinations.

Risk Management

The hidden cost of ineffective learning

Most of the rioters in the recent English riots had low education achievement. Across the world, the hidden costs of disengagement and poor academic performance are enormous, and have a range of impacts such as:

  • Crime, drug use, teenage pregnancy etc
  • Poverty related health issues
  • Future tax revenues
  • Low participation in e-citizenship

A recent European Commission study puts the lifetime cost of dropping out of school early at between 1.1 and 1.8 million Euros per person. In Finland the cost is estimated at 27,500 Euros a year. In Spain, for example, dropout rates are running at 30%, so making even a small impact on this number can make a big difference. ICT solutions such as SIGMA – an early warning and intelligent intervention system in the United States – have potential for significant positive economic impact by anticipating which students are most at risk, then intervening before problems become serious.

Whilst ICT is just one of many factors affecting academic performance, it’s reasonable to assert that an investment in engaging children and supporting their learning with ICT should have a payback. Decision makers seeking both quick wins and longer term benefits can use ICT mediated intelligent intervention techniques to address a range of schooling related issues – academic and social.

For a deeper analysis of how risks can be managed through intelligent intervention, see “Managing Student Relationships” article.

Saving ICT Costs

ICT itself can be made more cost effective in a number of ways, and through virtualization and Cloud services in particular. Software licensing is an easy target for cuts, but the reality is that it accounts only for 14% of ICT spend at the most and in some cases as little as 5%.

The key is to use software to drive down ICT costs, and virtualisation and Cloud technologies offer a range of ways to reduce utility, facility (e.g. electricity and property), hardware, maintenance, and support costs.

Other approaches include using systems such as Windows Multipoint Server to “breathe new life” into old hardware, and re-using older, refurbished computers through, for example, the digital pipeline initiative.

Understanding ROI

Return on Investment is a highly contentious issue in schooling because there are just so many factors and variables to take into account. However, understanding ROI is crucial – without it, concrete plans are much harder to make manage.

At a very simple level you could argue that ROI can be stated as the number of units of learning completed divided by the cost. Schooling systems are ecosystems, so we need to consider a range of other factors too.

According to Cranfield University School of Management, all benefits can be measured to one degree or another, and the main categories of benefit are:

  • Financial—can it be converted to money?
  • Observable—can you see it, or find evidence of it?
  • Quantifiable—do you have the figures available now, somewhere?

ROI can be thought of in value terms too. For example, economic value, which needs to be understood at the level of contributing human capital to local, regional and national economic development plans.

Social value—clearly the domain of schooling—is more complex, but the Harvard Business School offers some useful insights:

“… Social Value is ‘about inclusion and access.…’ Value creation in this arena can be measured using a social return on investment metric (SROI), social earnings calculations and other evolving metrics. SROI analysis attempts to identify direct, demonstrable cost savings or revenue contributions that result from… interventions. (Jed Emerson, Jay Wachowicz, Suzi Chun, 2001)

One clear example would be to connect citizenship programmes with reductions in crime, or healthy eating programmes with reductions in healthcare costs.

Steps to Establishing ROI

The London Borough of Hillingdon produced an excellent model for understanding ROI across a range of public services. The following is based on this work (Simon Willis [Editor], 2005).

The first step is to list all the benefits that come from an initiative across all stakeholders. The second step is to categorise those benefits into three groups:

Financial Benefits

Those that will (when delivered) realise hard tangible cost savings, e.g.

  • Reduced property and utility costs
  • Reduced facilities management costs
  • Reduced recruitment costs
  • Cheaper, faster procurement—enabled by online procurement
  • •Reduced postage costs—swapping from manual post to email.
Efficiency Benefits

These are productivity improvements – e.g. employee time saved from web-enabled self-service. They can either be banked as financial savings or alternatively counted as ‘free’ resources to be reallocated elsewhere.

E.g.

  • Greater productivity—increased staff motivation from flexible working
  • Reduced staff turnover—improved work-life-balance
  • Better use of specialists—focus on value-added tasks via job redesign
  • Greater efficiency in data handling from access to electronic information
  • Reducing resource duplication
  • Reduced admin from standardisation of responses—e.g. communication to parents
  • Parent and student self-service using online forms/transactions
  • Enhanced performance-monitoring through tracking/data
  • Simplified supply chains.
Human Capital Benefits

Those benefits that cannot be converted with any degree of reliability into cash or productivity gains, but are the core operation of schooling—i.e. the number of units learned:

  • Academic Qualifications
  • Vocational Qualifications
  • 21st Century Skills

An example of how this can be brought together for an investment in a schooling system is as follows:

In this example, for a total investment of $1.5m, during Year 1 of the modernisation project an additional 500 units of learning has been outputted and other benefits to the equivalent amount have accrued. Using this example, you’d expect to see increased ROI over time as capital expenditure decreases while the benefits persist.

Setting out the ROI in this way clearly illustrates where investments need to be made, where costs can be reduced, and impacts best gained.

According to ICT Nordic report, “return on investment from ICT investments requires a commitment to organisational implementation on the part of the school management. They must be visionary enough to initiate and continuously support the use of ICT as a strategic tool for developing the general ambitions of the school.

In conclusion, in times of budget constraints, there is a strong argument to make more, not less ICT investment. ICT can be a strong strategic asset to increase academic and people performance and drive operational efficiencies. It can be used to save money in areas such as administration, inspection, examinations and assessment, and managing risks. For ICT to have financial impact it needs to be deployed with accuracy and in pursuit of clear goals. It also needs to be managed in an environment in which ROI is understood.

Putting the “i” into Singapore Schooling

With top rankings in PISA and TIMMS, Singapore is the envy of many schooling systems around the world. Whilst ICT is just one of a range of factors that affect learning outcomes, it is a key tool for meeting at least two of the four key desired outcomes of the Singapore schooling system – for all students to become self-directed and collaborative learners.

Singapore was one of the first countries in the world to have a national strategy for ICT in Schools. A succession of well-planned, funded and executed programmes focussing initially on infrastructure and training, and more recently focussing on self-directed learning – has driven effective use of ICT. For details of Singapore’s main ICT projects, see http://wp.me/P16Iyp-46

A great showcase for the effectiveness of this investment is Crescent Girls’ School, a member of the “Future School” programme, and recently awarded the status of Mentor School by Microsoft. Crescent also hosted the CRADLE conference on 1st – 3rd August.

On the surface, Crescent could be any other Secondary School, but a quick glance at the trophy cabinet next to the reception makes it clear that this school is totally committed to high performance. Crescent’s aim is to be at the forefront of harnessing technology to enhance learning outcomes. ICT is used extensively in both delivery and assessment and the school’s 1300 students each have their own Tablet PC. The goal of using ICT is to give students a degree of choice over what they learn and how they learn.

The students engage in a wide range of activities including 2D, 3D animation and robotics; multimedia production; photo-shooting and editing; and development and use of e-books. Particularly impressive is the use of Tablet PCs’ “inking” features for a range of activities including highly impressive manga artwork.

Crescent is moving towards project based learning with a series of “Integrated Secondary Curricula” programmes.

Virtual Reality is used at the school too. For example, in Geography, students experience immersive content showing erosion in a river – a concept that is much easier to grasp when viewing 3d animated rocks being swept along by the current from the perspective of the river bed.

Particularly impressive at Crescent is the way that teachers engage in the content creation process. For example, a complete suite of applications and content have been developed for the Tablet PC that not only exploits the pen and inking technologies but also address a range of different learning styles.

Taking this process further, teachers specified collaborative games to take advantage of the MultiTouch features in Windows 7 and HueLabs’ “Heumi” multitouch (Surface) devices. This means that students can now engage in a wide range of collaborative learning experiences, such as learning to write Chinese. As impressive as the technology itself is the way in which the room in which the Heumi devices are deployed. Here, in the “iCove”, strong colour coding of the devices and the seating, enable teachers to group learners according to their learning objectives.

More recently the school has introduced a biometric system that not only automatically records the students as present but takes their temperatures as they come into the school in the morning, enabling their health to be monitored.

The infrastructure that sits behind Crescent’s ICT provision is highly impressive. The infrastructure foundation is a Campus-wide wireless network with 100 Mbps Broadband. Tablet PCs are stored in steel lockers, and batteries are charged at charging stations.

Approximately 30 on-premises servers perform a range of essential back-end functions from authentication to content management. The Server infrastructure – based on a Microsoft platform – supports a rich tapestry of capabilities including:

  • i-Connect Learning Space – a role based portal for organising student’s learning and activities
  • Pearson’s Write to Learn – a system that helps “automate” the marking of essays
  • HeuX – Huelabs Classroom Management System – with lesson management, digital book library, real-time Communication and Collaboration include notes-sharing and social media; screen monitoring and broadcasting; Presence awareness; attendance; Video Conferencing
  • i-Media – content management system.
  • Interactive books

These solutions are supported by Windows Server; SQL Server; Microsoft SharePoint Portal Server; System Center; Live Communications Manager; Hyper-V and Live@Edu. Much of the learning that takes place at Crescent happens after school hours, and the Virtual Private Network enables students to have 24×7 access. It’s not uncommon to see the portal being used by students at home at 2.00AM.

Singapore schools benefit from very high quality teachers (only 10% of applicants get admitted into teacher training). This is reflected in the staff at Crescent. Principal, Mrs Eugenia Lim, supported by Chief Technology Architect for Learning, Mr Lee Boon Keng, have a highly structured and team orientated approach, underpinned by a strong focus on continuous professional development.

Every hour, the chimes of Big Ben ring across the school signifying a change of lesson. As with Cornwallis School in Kent in the UK, I was totally inspired by what I saw at Crescent but couldn’t help wondering whether a shift from time-based to a performance-based model would better fit such a technology rich approach to learning. Nonetheless, Crescent’s use of ICT is without doubt world leading.

Whilst Crescent Girls’ School is clearly a leader amongst leaders, it’s far from unique in Singapore in the way in which it innovates with technology. Singapore schools benefit from long term, consistent policy and investment in ICT in schooling. With their structured approaches, strong management and deep understanding of how ICT can make learning more effective, Singapore schools look set to continue to show the world how it’s done.

Fortunately for us all, Crescent Girls’ School are “giving back” by encouraging people to visit the school – both physically and virtually.

Thanks to Eugenia Lim, Lee Boon Keng and all the staff and students at Crescent Girl’s School.

CRADLE Conference, Singapore

On August 1st I was fortunate to be given the opportunity to deliver the Keynote at the CRADLE conference in Singapore.

The presentation contained a mix of material contained in “Schooling at the Speed of Thought” and some of the articles in this blog, especially the Transformation Phase article. Here’s the key points:

ABSTRACT

Introduction

Singapore was one of the first countries in the world to have a national strategy to roll out ICT to all schools. Key challenges addressed in this initiative are to:

  • Prepare students to meet the challenges of the 21st Century
  • Bring about improved learning and increased engagement through the use of ICT
  • Enable more self-directed learning

In summary, the challenge is to make schooling in Singapore even more effective through the use of ICT.

To address this, we need to ask three key questions:

1. How can software accelerate the learning process?

Computers in learning are increasingly being used as tools for creativity rather than as machines to deliver the curriculum. So, with a proliferation of new hardware and software developments, what new creative options are there for learning? How can software help to personalise the learning experience and open up completely new learning opportunities?

2. How can software be used to make better decisions?

How can schooling information and data be leveraged to get maximum impact from precious resources; what do we mean by “intelligent intervention” and why it is so important; how can we empower all stakeholders with information; and how do we drive alignment and performance towards strategic goals?

3. How can Cloud Computing be exploited to cheaply deliver massive-scale, high-quality learning solutions?

We don’t normally expect a school to generate its own electricity – but we have expected our education institutions to be experts at running their own “IT Power Stations”. How can Cloud Computing change this?

With the advent of Cloud Computing, also comes the realistic prospect of providing anytime anywhere learning for all. So how can massive, cheap, and highly available computing services be combined with a range of access technologies and high quality learning content to open up learning opportunities to all citizens of Singapore – and especially those who are in the greatest need of it?

Conclusion

With highly developed infrastructure, talent and innovation, Singapore is in a great position to exploit technology even further. The concluding part of this presentation asked what world-leading innovations and software solutions can be leveraged in Singapore and how we can architect “anytime anywhere learning for all?

For a copy of the presentation please go to: http://bit.ly/pRZUMJ

Thanks to my colleages in Singapore – Horng Shya Chua; Jason Trump; Gerald Tan; Puay San Ng; Eugenia Lim, Lee Boon Keng and the staff and students at Crescent Girls’ School. Thanks also to all those who attended the CRADLE event.

The Transformed Phase

This is the fourth and final article on the phases of transformation that schooling systems go through. The first was “Taking the First Steps”, and this phase is characterized by access. The second, Taking the Next Steps – The ‘Enhanced’ Phase, is where technology is used to enhance existing processes. The third -“The Strategic Phase” – is characterized by using technology to meet strategic goals and help determine what those goals should be.

Feedback that readers have kindly sent me had prompted me to adjust the overall maturity framework so each of the main characteristics of each phase now look like this:

Four Stages of Schooling System Maturity

Whilst the three preceding phases were about applying technology to schools as they currently are, the Transformed Phase is about fundamentally changing the nature of schooling itself.

Using ICT to transform schooling allows us to ask questions such as “where is school”, “how do we deliver personalised and engaging learning experiences”, and “how can we develop highly effective and efficient schooling systems”?

Whilst transformation will mean many different things to many different people, there are three main ingredients to a transformed schooling system.

The first is providing anytime, anywhere learning for all citizens. The second is providing highly personalised experiences to all learners. The third is about building a culture of high performance throughout the entire schooling system.

Anytime Anywhere Learning For All

The first principle in transforming schooling is to redefine its “customer” base. At present, schooling reaches learners between the ages of 5 to 18, within narrowly defined geographic boundaries, and for around 18% of the year only. Now, there is a significant opportunity to deliver learning services to entire populations at relatively low costs. This is because the cost of digital content and software only marginally increases with the number of users, and because the cost of delivering e-learning services at massive scale through Cloud computing is increasingly cheap and getting cheaper.

To date we have thought about learning in the physical sense of going to a place called a school. Going forward, schools will facilitate learning less as a physical experience and more as one that can take place across different locations. Increasingly, we can expect the process of schooling to become less dependent on learners regularly attending a single campus over a long period of time.

Schooling will spread out of the physical confines of the school campus, and into ‘found space’ such as offices; high street locations; apartments; and even the homes of children.

The youngest learners need somewhere near their own home where they can physically go to access learning facilities; to learn with other groups of learners and access richer materials than those which they have in their own home. Older learners need learning spaces to interact with their tutors, counsellors and learning managers, but also need to learn in environments that are appropriate to their learning tasks. For example, a specialist science learning module – say optics, for example – may well be based in a traditional (campus) school laboratory, but equally there could be a company in the local community specialising in optics that would be willing for students to learn at their facilities.

In this model, there is still room for the traditional “Campus School”, but as a social, intellectual and resource hub – a place for those specialist learning facilities which might not be available in the local community such as laboratories, workshops, libraries, art studios and gymnasia. The Campus School is also a place from which to organise and manage learning and produce learning content.

The Campus School of the future will be a community resource; it will be open for 52 weeks a year, 7 days a week from 7.30 am (with breakfast clubs, computer clubs, gym facilities etc.), and will stay open until 10.00 pm (with after school clubs, homework clubs, sports facilities, cyber cafes etc). Its pupils will be aged 1 to 100. The four walls of a classroom/school will be replaced with online classrooms/schools/homes, ensuring access to technology and information for all.

Many university towns reflect this approach, where university learning facilities are embedded in the local community. Schooling is catching up. In “First Steps” we’ve already seen the ‘Kiosk’ model in India, where learning is simply put out onto the street to be consumed by self-organising groups of children. On the other side of the world, in New Zealand, Discovery Learning has schooling facilities deeply embedded in the community with locations in shopping malls and central business districts. Here, “school” isn’t a building and children are given “trust licences” to learn where they need to in the local community.

In this model, there is a vast spectrum of types of learning spaces, from traditional classrooms to cyber cafes, each type able to facilitate different levels of collaboration and self-directed learning.

Learning Spaces (C/O lookred)

New types of learning spaces will facilitate a much wider spectrum of learning methods too:

Technology Enabled Learning Styles. C/O lookred

Where Is School?

“Anytime Anywhere Learning for All” means exactly that. Every citizen, anywhere, able to access organised learning.  Not everyone will need to, or be able to, attend school in order to receive schooling services, which poses the question “where is school?” In the transformed schooling model, schooling is embedded deeply into the local community in the following way.

Anytime Anywhere Learning for All

1. Community Learning Spaces

Community Learning Spaces are places in which formal, organised schooling takes place for school age learners, that are not within the walls of the traditional Campus School. These spaces are, in effect, “franchises” of the Campus School, and firmly embedded into the Campus School’s systems. Learners in Community Learning Spaces have managed internet access, and plug their personal learning devices straight into e-Learning Service. Even the youngest children can learn with ICT – e.g. games based learning, immersive environments, interactive whiteboards and programmable toys. Learning to write with a Tablet PC helps young children to acquire basic skills long before they can type or use a mouse.

Learners are registered as members of the Connected Learning Community and the process of data collection begins. Managed learning pathways and dynamic timetables ensure that students work on the tasks that are most appropriate for their stage of learning. A spectrum of creativity, productivity and learning tools ensure that the optimal blend of computer and teacher mediated learning takes place. The ICT infrastructure comprises wireless network, workstations, display, scanners. Infrastructure and Core Sofware Services mean that computers joining the wireless network are managed via a Virtual Private Network. Users and devices are authenticated, and policies – especially security and filtering policies – are imposed.

Teachers, assistants and other responsible adults – connected to peers and experts through the technology – directly support the learning process. Learners progress through the curriculum as quickly as their learning performance permits, and move to different learning spaces when appropriate. Staff and learners alike access the Connected Learning Community portal to get information, content and tools. Learners can see their assignments, feedback, learning materials and web links from a single site, and populate an e-portfolio with their work. Community Learning Spaces are extensions of
the Campus School, and both staff and learners will spend some time at there.

2. Campus School

The Campus School acts as a central point for organising, managing and creating Anytime Anywhere Learning in the community. The Campus School in effect “franchises” learning operations in Community Learning Spaces, so ICT is used to drive alignment; manage performance; and ensure high quality, paperless administrative processes. Live communications ensure that expertise within and beyond the Campus School can be “piped” into the Community Learning Spaces (CLS) on demand.

The IT Infrastructure of the CLSs are supplied as a service from the Campus School.

Learners – of all ages – visit the Campus School to use specialist facilities and IT equipment that are unavailable in the Community Learning Spaces. Whilst learners bring their personal learning devices into the campus, the site has a proliferation of multi-touch interactive displays and these enable learners to access a vast array of information and content from anywhere on the site.

In the Schooling Enterprise Architecture model, Campus Schools are branch sites from the Local Education Authority hubs and as such receive the full range of Schooling Enterprise Services for Student Relationship Management, intelligent intervention, performance management, planning, operations and administration.

A master database of resources – people, spaces, equipment and content – enables the Campus School to dynamically timetable learners so their precise learning needs can be met immediately. Predictive analysis of learning pathways enables the system to book or purchase resources well in advance.

Underpinning the IT infrastructure at the school and its “franchises” is a set of Core Software Services including Security, Identity, Comms & Collab, System Management and Directory services. Services are either delivered through on-premises servers or relayed from data centres, private and public clouds “upstream” at LEA and/or MoE levels.

3. Local Education Authority

As a Hub in the Schooling Enterprise Architecture, the Local Education Authority’s main role is to deliver Schooling Enterprise Services to Campus Schools. Their managerial functions, facilitated by ICT, are to drive accountability, alignment and performance.

Another key role is to run large scale access programmes. Using aggregated buying power and regional connections the LEA is in an ideal position to acquire devices, infrastructure components and support for the best price-to-quality ratio. As a Hub for the MoE, LEAs should be able to ‘enforce’ MoE mandates on standards, quality and Service Level Agreements.

The LEA can also be an aggregation point for data held on children by different authorities – health, social care, the police and education – to be aggregated to give a secure ‘big picture’ on children,
particularly those who may be at risk.

4. Workplace

Anytime anywhere learning for all means delivering learning experiences to all, including those in work. Online vocational courses are available through the Connected Learning Community portal. Workplaces offer valuable learning opportunities to learners of all ages, especially where specialised equipment is beyond the financial reach of the Campus School. The workplace can also be used to house Community Learning Spaces. Being part of the Connected Learning Community Portal; local businesses can have direct dialogue with – and receive relevant learning services from – their local Campus School, FE College and University to better meet the learning needs of their organisations.

5. University

Universities offer a rich extension to the Campus School learning community by offering online access to lectures, experts and learning resources. Within the Anytime anywhere learning model, Higher Education is made available to students who are ready to take learning modules offered by the University – virtually or otherwise.

6. Off-Site Learning Environments

With community-wide Wi-Fi coverage, homes, cyber cafés, hospitals, and recreation areas can all be turned into learning environments.

Personalised Learning

Transformed schooling organises the learning around the individual, not the other way around.

Learning, by definition, is personal—no one else can learn for you. People learn different things at different speeds and in different ways. When students walk into a learning space, they bring very different sets of attributes, abilities, knowledge, skills, understandings and attitudes with them.

Over recent years, the concept of personalising learning has gained considerable ground.

From a technical perspective, personalising learning is about:

  • Delivering an extended range of opportunities to learn – individually and collaboratively
  • Delivering content that addresses precise learning needs
  • Managing learning pathways

Extending Opportunities to Learn

The wider and deeper the choice of content, the more personalised the learning experience can be. When providing learning to an entire community, the type of learning experience consumed will range from informal learning to structured and accredited courses.

Extended Learning Opportunities for All

With a wide and deep supply of learning content, learners can have a wide choice of learning experiences, modalities, pathways and assessments. For example, being able to pick from a menu of languages to learn is a more personalised experience than just having one to choose from. To be able to choose what level to study a language at – from beginner to advanced – again adds to the degree of personalisation.

Personalised learning is not about learning in isolation, however.  It is quite the opposite in, fact.  Learning is a social activity and personalising the learning experience is to do with providing opportunities to collaborate as well as to learn independently. A learning task that has been personalised for somebody could involve them working in a team, and part of the assessment could be how well they have managed to collaborate with other people. Therefore, another technical requirement here is to provide Communication and Collaboration tools – the more sophisticated these tools, the
greater the possible degree of personalisation.

Addressing Precise Learning Needs

Learners learn in completely different ways, and at different rates depending on prior knowledge and their learning styles. Therefore personalised learning systems need to deliver content so that different learning styles are addressed and different learning speeds are catered for. For example, in learning about the skeleton of dinosaurs, one learner might learn best by listening to a recording, another through looking at pictures, another by using a Tablet PC to kinaesthetically piece together the bones with a stylus.

From a technical point this means that content needs to be packaged so that learners can access it through multiple learning modes. Increasingly there will be automated agents that scour the internet and deliver content that precisely matches learning needs.

The relative length of time that it takes a learner to acquire the expected learning in each module shouldn’t matter as the e-learning services will adjust the personal learning pathway that the learner takes accordingly.

Managing Personal Learning Pathways

The extent to which a learning task has been personalised is a function of the extent to which that individual’s prior knowledge, skills, preferred learning styles, and attitudes have been taken into account when assigning the task.

In this model, learners are constantly assessed as they move through the learning programme, and the pathways that they take continuously evolve as they work their way through. This relies on feedback loops and systems which can dynamically adapt to the twists and turns of the learning process, and set challenging learning goals and tasks. This is essentially about using “business logic” which in turn uses data to decide what students need to learn next and manage the learning process.

Setting the learning task automatically is something that intelligent tutoring systems and learning management systems such as “Success Maker” have been doing for many years. However, if completing the learning task needs more than just a computer, managing the process dynamically becomes complicated.

This is where dynamic timetabling comes in. Dynamic timetabling starts with the premise that learning should be organised on a ‘performance’ as opposed to a ‘time’ basis (see Schooling at the Speed of Thought for more details). The core idea is that dynamic timetabling matches the optimal learning experience for a learner to the resources needed to deliver it. For example, if the learner has  mastered the concept of soil erosion in Geography, the next task may be to apply that learning in a practical experiment. This involves working with others who are at the same learning stage, using equipment, a physical space and teacher/assistant supervision. Ideally, the dynamic timetabling system will have predicted when these resources will be needed, organised them ahead of schedule and matched the learner to what they need to complete the next task.

Dynamic Timetabling

Today, this can be at least partially accomplished through resource scheduling within CRM.

Once the learning task is completed, a record of achievement builds in the learner’s e-portfolio.

Culture of Performance

In the Transformed Phase the entire schooling system is working at optimum efficiency and effectiveness – what Joey Fitts and Bruno Aziza (Driving Business Performance, 2008) call a “Culture of Performance”. To get to this stage schooling systems will have gone through the following stages:

  • First Steps: Increasing visibility
  • Enhanced: Moving beyond gut feel, and planning for success
  • Strategic: Executing on strategy

A culture of performance is goal orientated; results are measured and members of the Connected Learning Community are competitive in a constructive way. A culture of performance is
about transparency, predictability, and the ability to adapt to changing conditions. With capabilities to monitor, analyse, and plan, performance orientated organisations can create a culture where information is a prized asset, aligned execution is the norm, and accountability is embedded.

From a learner’s perspective, this is about friction-free administration regarding courses, options and assessments. It’s about micro payments, and cashless vending, and not having to repeatedly enter the same basic data for silo’d administrative processes. It’s also about the seamless escalations of issues – such as requests for special support.

From a teacher’s perspective this is about doing the lowest possible levels of administrative tasks, confident in the knowledge that the system is dealing with the administrative mechanics of running the schooling operations. For those administrative tasks that teacher have to do, reporting, administration, productivity and communication & collaboration tools ensure that the tasks are efficiently executed and add real value to the organisation.

Administrators and managers get the benefit of using processes that have been integrated. For example, when new staff join the organisation, background checks, basic data collection, terms and conditions, salary and on-boarding systems all work together as a single function, crossing organisational boundaries automatically. When strategy is set at the highest organisational level, this cascades down automatically into the objective setting process, ensuring organisational alignment. Performance management tools linked to in-depth data about learner performance ensure that teaching staff are rewarded fairly. Business intelligence is available to provide deep insights into operations to ensure that resources are being used to maximum effect.

Bringing it All Together

The key difference between a transformed schooling system and any of the other phases is the degree to which the entire system is architected around the student.

Learner at the Centre

The Transformed schooling system will integrate a spectrum of services and processes, many which would have been in silos before the transformation process, around the student. The result of this is that the student experiences a range of highly individualised services, delivered by a high performance, highly connected, lean, efficient and cost effective schooling system.

Getting to Transformed schooling is a long journey. In most countries there will be significant inertia from legacy systems. Paradoxically, one of the drivers for transformation is diminishing budgets. In the United States, for example, there is a strong surge towards anytime anywhere, personalised learning for all – delivered from outside the formal schooling system, driven by collapsing schooling budgets and widespread dissatisfaction with the current system.

Ultimately, the point of investing in transforming a schooling system is to get an order-of-magnitude improvement in return on education budget investment, and this cannot be done in isolation. The whole enterprise of transforming schooling needs to be organised within the framework of a Schooling Enterprise Architecture, as described in detail in Schooling at the Speed of Thought.

Schooling Enterprise Architecture

Focusing on the “IT Platform Architecture”, the Transformed phase has 5 interconnected layers:

Tranformed phase - five layer Schooling Enterprise Technology Architecture

And finally, across each layer are the following key technology levers:

Schooling Enterprise Technical Concept Architecture - Transformation Phase

This is the last in this series of articles on the phases through which schooling systems evolve, but watch this space for related articles. All comments, feedback, questions and suggestions for articles will be very welcomed.

Thanks to Matthew Woodruff and Chris Poole from lookred for contributions to this article.

Video Infrastructure Management – driving down costs, driving up standards

One of the more interesting solutions shown at WPC in Los Angeles was a Video Infrastructure Management system from Polycom. This system has enabled school districts to drive down costs and raise standards by providing a platform for easily creating content, and making it searchable and easy to consume.

One school district taking advantage of this is Gaston County in North Carolina. This school district is comprised of 54 schools with 31,416 students in disparate locations. Gaston County School planners realised that limited budget and resources would force them to find innovative ways to meet their ambitious academic achievement goals within aggressively constrained budgets.

The district had a legacy videotape loan network to enable students in multiple locations to participate in remote classes, so upgrading this became the focus of the solution project. The first step was to install video capture solutions in distance learning labs to capture the video and audio output directly while classes were in progress. This also included screen captures from computers, whiteboards, document cameras – even content from a graphic calculator. The system then converted the content into synchronized presentations that could be viewed live or on-demand through a browser.

These units are centrally controlled via a multimedia content management solution , which organizes and manages presentations via a customized search portal. The system then automates a variety of steps in the class capture and publishing process – including the scheduling of classes every day at specific times; publishing of files to streaming and web servers; and managing a storage area network located at the Gaston County Division of Resource Management Office. Reporting systems can show which students have viewed the online class archives.

As a result of implementing the solution, Gaston County’s distance learning courses doubled within a year. Now the county is expanding opportunities for more students to experience special programs and collaborate with local higher education partners, including taking advanced courses at the neighboring Gaston College.

Finally, the solution also enables professional development for the county’s 4400 employees and nearly 2200 teachers. According to Don Junker, Assistant Chief Technology Officer, “The school district is very spread out so when there’s a mandatory training program a staff member may have to drive 45-minutes to get there, or instructors may have to repeat the class dozens of times to ensure 100% participation. Now, we can save travel costs and staff wear-and-tear by using distance learning and archive the sessions for those who can’t attend in person.”

For additional information about Video Content Management Technology visit, http://www.polycom.com/solutions/industry/education/index.html. Also, take a look at this video that summarises the solution:

The “Strategic” Phase

This is the third in a series of articles that aim to help schooling systems develop their technology, the first being “Taking the First Steps“ and the second, Taking the Next Steps – The ‘Enhanced’ Phase.

There are four distinct phases through which technology in schooling evolves. The first phase is characterized by access. In the next phase, technology is used to enhance existing processes. The third phase is characterized by using technology strategically. No longer is technology considered a “bolt-on”, or “veneer” on top of existing processes – it now helps drive schooling towards strategic goals such as significantly improved learning and better return on investments. In the final phase, leading edge schools use ICT to transform their operations, using it to personalize learning, integrate deeply with the wider community, run extremely efficient administration systems and develop a culture of performance.

‘Strategic’ Phase Vision

In the Strategic phase, technology becomes a key asset in achieving the strategic goals of an organisation. It’s about restructuring work and processes and doing things differently.

Typically in this phase, the strategic goals of an organisation would include raising standards and improving performance, and technology is a strategic tool for achieving these strategic goals by enabling:

  • Intelligent intervention – data driven support for learners
  • Connected Learning Communities – fully exploiting all available resources, and integration with the local community
  • Monitoring, analysis and planning – data driven decision making
Four phases of ICT implementation

Goals

Intelligent Intervention

This is essentially about using data to make well informed decisions about what students need to learn or do next. To fully personalise the learning experience students should be constantly assessed as they move through their schooling, and their learning pathways should continuously evolve. This relies on highly effective feedback loops and systems which dynamically adapts to the twists and turns of the learning process, and sets challenging learning goals and tasks. This is extremely difficult to do within a paper-based setup, but can be made a lot easier through using IT systems that provide analytic and workflow capabilities.  Intelligent tutoring systems, and managed learning environments, are becoming more commonplace and increasingly sophisticated.

Monitoring, Analysis and Planning

To manage an organisation strategically, as opposed to fighting fires, the ability to monitor performance, analyse results and plan for improvements is fundamental. Organisations wanting to manage strategically must have three key capabilities:

Monitoring

This capability provides managers with the ability to know “what is happening” and “what has happened.” Organisations implement dashboards, scorecards, or reports to monitor their performance. These visual applications allow managers to keep an eye on important indicators of their organisation’s health.

Analysis

This capability provides managers with the ability to know what is happening and why. To analyse performance, organisations implement solutions that are often very interactive in nature and allow managers to investigate the root cause of issues they see in their dashboards, scorecards, or reports.

Planning

This capability provides the organisation with the ability to model what should happen. Organisations develop processes and tools to conduct the essential planning, budgeting, and forecasting exercises. These processes allow managers to align groups and individuals around the metrics that drive the organisation—for instance: “what are our examination result targets?” or “what is our spending versus our revenue?”

Connected Learning Communities

Whilst there may be elements of learning that require independent work, learning only really acquires meaning in a social context, and the most immediate and direct social context for schooling is the local community.

ICT can be used to connect together all those who can make a contribution to students’ learning – e.g. local business, community resources (e.g. museums/libraries), parents and 3rd party learning services. It can connect students to inspiring individuals and inspirational speakers; promote debate and engagement between collaborators in face-to-face or virtual groupings; and provide mentoring opportunities. Connecting stakeholders together in a Connected Learning Community has enormous benefits such as engaging parents more deeply in the learning process, speeding-up processes and improving students’ connections with the outside world. The core of a connected learning community is a portal that can be accessed from anywhere.

Scenarios

Student Access

In the Strategic phase, students have continual access to their own learning devices. These devices need to enable a range of learning scenarios (not just content consumption), be rugged, easy to repair and support, manageable on a network.

Devices should be available to students so they can learn anytime anywhere, access content, learning management and communication and collaboration tools via the Connected Learning Community Portal.

Anytime Anywhere Learning = access to devices + learning services

Having access to their own devices enables students to experience a wide range of learning scenarios:

ICT enables a wide range of learning styles

Classroom

Classrooms need to accommodate an increasingly wide range of learning styles, and equipment needs to be laid out in quite different ways according to the demands of each different learning task, for example:

Different learning tasks require different floorplans

BECTA provided the following guidance to UK schools on different classroom layout options:

Pods – separate circular / hexagonal / octagonal benches with workstations
Hexagonal pods
Advantages
  • No corners with 2 computers, so no dead spots that cannot be used
  • No extra space required for 2 pupils to share a computer
  • Can support collaborative work as users working around ‘one pod’
Pods – squares with computers on two sides only
Square pods
Advantages
  • No corners with 2 computers, so no ‘dead spots’ that cannot be used
  • No extra space required for 2 pupils to share a computer
  • Can support collaborative work as users working around ‘one pod’
Bays built along walls
Bays
Advantages
  • Teacher can more or less see all computer screens from the centre of the room
  • Provides opportunity to use the centre of the room for tables enabling work away from the computer, and to gather groups for discussion
  • Cabling and electrical work is cheaper and easier than ‘pod’ designs as along the room edge.

School

In the Strategic phase, IT has become a strategic asset to schools. With the infrastructure optimised in the Enhanced phase, we now turn our focus on workloads delivered by servers.

The following services are core in the Strategic phase:

  • Optimised Infrastructure – including File and Print, Database Services, Directory Services, Security, Device Management, and Data Protection and Recovery
  • MIS – Management Information Systems
  • Portal
  • Unified Communication
  • Virtualisation – centralizing computing tasks to improve scalability and system performance

These, typically, will be delivered through three layers:

  • On-Premises – the school hosts key functions on their own servers
  • Data Centre/Private Cloud – the Local Education Authority (LEA) delivers services to schools from their servers
  • Public Cloud – the school receives services from the LEA, Ministry of Education and private suppliers from Public Cloud Services
School Server Infrastructure

Portal

The Strategic phase is characterised by the Connected Learning Community, the core of which is a portal that can be accessed from anywhere. For it to be effective it needs to be “role based” i.e. present users with information and tools relevant to their role and to them as individuals. In other words a teacher in the community sees the information relevant to all teachers, their fellow subject specialists, and also information specific to their particular group of students, their particular HR information, and their particular teaching content, tasks, calendar, e-mail etc.

A portal should give students, parents, managers, teachers, their own “spaces” and deliver to them the resources that are important individually to them through a single web page.  It aggregates information from diverse systems into one interface with a single sign-on ID – and organisation-wide search capabilities so that users can access relevant information quickly.  Teaching and administration staff can use the portal to distribute information to students based on their enrolment, classes, security group or other membership criteria, while enabling them to personalise the portal content and customise the layout to suit their needs.

A great Portal reference architecture is Twynham School. Twynham is a 1600+ Secondary school in Christchurch UK, built  a powerful collaboration platform – “Learning Gateway” – which allows students, staff and parents to work efficiently; develop independent and inter-dependence in their learning strategies; and support children in achieving their full potential. Twynham School won the BECTA ICT Excellence Award in 2008 for learning Beyond the Classroom and the schools works with over 400 schools internationally to support the development of their Learning Platforms.

Twynham School Portal Navigation bar

Mike Herrity at Twynham has published a detailed e-book explaining how the Learning Gateway is used: http://bit.ly/qJohiL

Microsoft have also published a full architectural guide explaining how Twynham built their Learning Gateway – http://bit.ly/qORAW5

Enabling many of the functions in the portal are 2 sub-systems – Content Management and Unified Communications & Collaboration.

Content Management Systems (CMS)

When ICT is fully implemented, vast amounts of content gets created.  In order to get maximum efficiencies from ICT, this content needs to be organised and managed in a way that means that people don’t replicate one another’s work.

A content management system in a connected learning community helps education institutions organise and facilitate the collaborative creation of documents and other content. They enable the full life cycle of content – from initial creation to delivery to end users.  CMS comprise document and records management, web content management, forms, search, library systems, curriculum frameworks, curriculum systems, curriculum exemplars and resource assemblers.

Unified Communications (UC) & Collaboration

Today it is typical that people will have multiple contact addresses – direct line phone number; mobile phone number;  e-mail; Instant Messenger; home number; personal mobile number; home e-mail, etc. Unified Communications (UC) takes identity and presence and then has all of these other ways of interacting simply connect up to that.

A single integrated identity can simplify how you find and communicate with others.  One integrated desktop application can provide easy access to all the ways users are likely to want to communicate.  Another key advantage to UC is that in using Voice over IP (VOIP) for telephone calls, it has the potential to significantly reduce communication costs.

UC enables students, teachers, parents and other stakeholders to confer and consult in the way that suits their work style by switching seamlessly between videoconferencing, telephone, email and instant messaging.

Also within UC are task and calendaring functions.

Data Driven Decision Making

In a schooling system, data driven decision making is supported by a huge number of information systems.  Any process that involves the creation and transmission of information can be considered an information system – even informal discussions.

The collective term for the information systems in schooling is Management Information Systems (MIS).

Functions Supported by an MIS

The functions that a Management Information System need to support are:

Improving Student Performance Progression Management
Learning Management Intelligent Intervention
Parents Engagement In Learning Better Teaching Decisions
Make Better Management Decisions Monitor, Analyse and Plan
Tactical Decision Making Data Visualisation
Manage Resources More Effectively Planning and budgeting
Financial Control Asset Control
Reporting Accountability and Alignment
Performance and Assessment Data KPIs, Scorecards, Dashboards and Reports
Key Performance Indicators (KPIs) Drive Administrative Efficiencies
Planning Organising
Controlling Co-ordinating
Management Information Systems – Functional Architecture

In this context, an information system really means an organised hierarchy of information sub-systems. Management Information System (MIS) is a term used as a container for all of the electronic information systems within a schooling system.  These systems vary in size, scope and capability, from packages that are implemented in relatively small organisations to cover student records alone, to enterprise-wide solutions that aim to cover most aspects of running large multi-site organisations.

A MIS includes the following sub-systems:

  • Decision Support Systems (DSS)
    • Finance
    • Performance Management
    • HR
    • Student Relationship Management (SRM)
    • Enterprise Resource Planning (ERP)
    • Analytics and Business Intelligence (BI)
    • Timetabling
  • Student Information Systems (SIS)
    • Integrated Student Record
    • Electronic grade book
    • Attendance Management
    • Automated workflows
    • E-Forms
  • Learning Platform
    • Learning Management Systems (LMS)
    • Managed Learning Environment (MLE)
    • Virtual Learning Environments (VLE)
    • Content Management Systems (CMS)

For a full description, see Schooling at the Speed of Thought, Chapter 6, Managing Information.

Local Education Authority

In the Strategic Phase, the goal of service provision at Local Education Authority level is to deliver those services which when aggregated improve in quality and price.

Local Education Authorities can use their scale to negotiate the best prices for content, communication, support services etc. Many of the services requiring the most maintenance and management – e.g. learning services, system management, business intelligence, and administrative tasks such as payroll and HR, are delivered more cost effectively from a centralised point.  Other benefits include the use of greater amounts of data for decision making – an LEA with data from many schools can perceive more patterns than a single school with its limited pool of data.

Many LEA services are delivered through data centres built on top of optimised infrastructures. Increasingly data centres will become Private Clouds – essentially Infrastructure as a Service (IaaS) within the data centre. The large scale and pay-as-you-go economics of Public Clouds aren’t available in typical Private Clouds. However, Private Clouds offer at least some of the scalability and elasticity benefits of Public Cloud but with additional control and customisation. Increasingly many of these services will be also be delivered from Public Clouds.

The services delivered by the LEA can be split into two main categories:

  • Schooling Enterprise Services
    • Monitoring, Analysis and Planning
    • Intelligent Intervention
    • Student Relationship Management
    • Administrative Processes
    • Operations
  • E-Learning Services
Local Education Authority Schooling Enterprise Architecture (SEA)

Ministry of Education

Some of the Schooling Enterprise Services delivered by LEAs to their schools and communities could be provided at National level from the Central Ministry of Education. Services such as strategy, policy, budgets, and curriculum are usually set and delegated at national level.

Computing functions at Ministry of Education level can be grouped into three main categories:

  • Internal departments – Curriculum, Policy, Research etc.
  • Regional Services – Resources and BI
  • National Services – Content (information services) and infrastructure – e.g. national level schooling enterprise internet backbone
Ministry of Education perspective

One of the most important functions at Ministry level is to have a “clear line of sight” of the performance of the schooling system. This enables BI analysis and for resources to then be focussed on the areas where they will have most impact.

Fitts and Aziza (Joey Fitts and Bruno Aziza, 2008) talk of a “line of sight” from strategic to operational to tactical decisions as the discipline that drives aligned execution. “Line of sight” means clear visibility of goals, and progress towards them at executive (strategic), management (operational), employees (tactical) levels.

“Clear line of sight” is about performance metric alignment across organisational layers. This can be thought of as an organisation chart for performance metrics, indicating how the various levels of the organisation’s performance metrics relate to one another. At school level, classroom teacher’s metrics roll up to their Head of Department, which in turn roll up to Deputy Principals, which in turn roll up to the Principal. In turn, and depending on the mode of operations, performance metrics for Principals should roll up to those of Local Authority Directors, which in turn finally roll up to the Ministry of Education.

Clear Line of Sight enables strategic allignment

Technology Building Blocks

Finally, pulling these building blocks together we get the following high level architecture:

Technology Building Blocks for Strategic Phase

Conclusion

Moving from the Enhanced Phase to the Strategic Phase is as much about management as ICT. In this phase, the technology is used a tool for getting better allignement between strategy set at MoE level to exectution at school level. At all levels, there are strategic decisions that ICT can help monitor, analyse, plan and execute.

In the next article in this series, we will explore the final phase – Transformation.

Taking the Next Steps – the “Enhanced” Phase

This is the second in a series of articles that aim to help schooling systems develop their technology, the first being “Taking the First Steps“.

There are four distinct phases through which technology in schooling evolves. The first phase is characterized by access. In this phase, giving students and teachers access to computers to improve some aspects of lesson delivery and administration is the main focus. In the next phase, technology is used to enhance existing processes. It’s about providing content and tools to increase learning, organising communications and starting to manage data and information. The third phase is characterized by using technology strategically. No longer is technology considered a “bolt-on”, or “veneer” on top of existing processes – it now helps drive schooling towards strategic goals such as significantly improved learning and better return on investments. In the final phase, leading edge schools use ICT to transform their operations, using it to personalize learning, integrate deeply with the wider community, run extremely efficient administration systems and develop a culture of performance.

Four phases of ICT development in schooling

The “Enhanced” Phase

Goals

The goals of the Enhance Phase of ICT development are to:

  • Increase learning
  • Improve communications with parents
  • Manage data and information

Increasing Learning

In this phase, computers are available in several areas of the school, some in labs, and others scattered in classrooms and other learning spaces. These computers are connected together in a network and key resources, such as content, printers, scanners, and users are managed centrally.

Students use computers as a learning tool – e.g., using multimedia learning packages; solving maths problems; researching; reading from e-books; developing writing skills; learning languages; and developing 21st Century skills.

Curriculum Area Examples

Language
Hyperlinks allow more creativity in narrative construction
  • Word structure and spelling
    • A great example of how to help children remember how to spell individual words is the “Look Cover Write and Check” web application on the Ambleside School site   
  • Composing and presenting
  • Learning foreign languages
    • Bilingual audio books combine rich graphics with spoken word for foreign language learning. Award winning Mantra Lingua have combined traditional print media with a “talking pen”.    
Mathematics
Making visualisations easy in Mathematics
  • Learning from feedback
    • Word processing software now enables students to “word process” maths to clearly show complex formulae, along with 2d and 3d graphs, making it easier to communicate their thinking and get feedback on it. Check out the free Math add-in for Word and OneNote.
  • Creating patterns
    • Students can use Logo software to draw patterns students quickly learn the importance of expressing their commands unambiguously and in the correct order
  •  Seeing connections
    • A software Graphing Calculator can be a great tool for teaching maths when used with a data projector for whole class teaching, or better still when given to students to use.  A lesson can be built up and stored then each stage “replayed”. Check out the free Microsoft Math 4.0 
  • Exploring data
    • Students can design surveys, such as the heights of their peers and teachers, and enter the data into a spreadsheet to learn about averages and correlations.
Science
 
  • Assisting observation
    • Electronic telescopes enable pupils to collect images from different locations on Earth and at different times of the day. Telescope sites also provide learning resources and galleries of images.  
  • Recording and measuring
    • USB microscopes and data loggers can be used in the classroom to observe, record results, plot graphs and analyse data. E.g. see this data logging programme from Kent which explores topics such as: most effective sunglasses; which surface will slow down the car? Who has the hottest hands; where is the noisiest place in school?
  • Providing models or demonstrations
    • Simulating experiments can enable students to experiment with phenomena that may be too slow, too fast, too dangerous or too expensive to experience in school. Check out Crocodile Clips’ Yenka for example.

An essential consideration is accessibility for all. For students with some disabilities, technology can open up new windows of learning opportunities. For a full explanation go to: http://edutechassociates.net/2011/03/08/accessibility/

A fantastic resource exploring different ways in which ICT can be used across the curriculum can be found here: http://archive.naace.co.uk/direct2u/indexbysubject.html

Additionally, worksheets with practical examples and screenshots explaining how to use ICT in Primary Schools are available here

Other resources developed for classroom use by teachers, for teachers can be found in the Teachers Toolbox and here.   

Managing Learning Content

When ICT is implemented, lots of content gets created.  In order to get maximum efficiencies from ICT, this content needs to be organised and managed in a way that means that people don’t replicate one another’s work.

At school level, content can be managed through a file sharing system on a server on a network. For example, Windows Server 2008 enables files to be centrally shared and managed. The “Shared Folders” feature enables file-shares to be created and permissions set, which will allow students and teachers to store their work.

At a more advanced level, content can be better managed using a portal such as SharePoint Server 2010. Combining content management with collaboration tools and powerful search, SharePoint makes information easy to find, share, and use.

Beyond the school, regions or even whole countries are beginning to provide organised learning content, as explored in the articles on SULINET and managing learning content.

In Brazil, for example, Educopedia is a learning content portal run by the City of Rio. Users are presented with a list of all of the elementary and middle school grades and under each of these they can access all the school curricula for each discipline.

Educopedia - learning content access made easy

For example, a teacher can click on a subject area link, and see a content index consisting of the school year course plan which contains the lessons and related curriculum standards.

Educopedia - making it easy to select resources related to curriculum standards

From there, they can download lesson plans with suggestions on how to make the best use of the resource materials available; a list of the skills and competences addressed; a PowerPoint presentation for classroom use; and a quiz with questions about the class content.

Educopedia - access to learning tools made easy

Educopedia also provides users with communication and collaboration functions through live@edu, which provides a mechanism for user authentication.

Parent Connection

The usual way in which schools communicate directly with parents is via “parent evenings” – many parents end up seeing a teacher once or twice a year for 5 minutes. Hardly enough time to say “hello” and “goodbye”. 

Research demonstrates that active parental involvement in educational activities delivers a positive impact on attainment. Technology can be used to connect parents with information regarding the educational progress of their child, and a range of supplemental activities in which the parent can support the learning process. For example, ICT can be used to:

  • Enable parents and teachers to communicate more frequently with each other
  • Identify problems and issues at an early stage and involve parents in rectifying them
  • Give parents the tools to support learning activities at home
  • Provide parents with immediate news about the school and its activities.

At a basic level, ICT can contribute:

  • E-mail news bulletins
  • Digital learning resources to assist the student with homework
  • Educational resources for parents, such as behavioural management guidance
  • Alerts on critical issues such as lack of attendance, dropping attainment levels, behavioural issues, etc
Miami Dade - enabling parents to see how their children are progressing and help with work at home
Miami Dade - essential information about children's school day made easily accessible
Managing Data and Information

Teacher Administrative Tasks

ICT can really help with reducing the time spent on teacher’s basic administrative tasks including:

  • Lesson plans and materials
  • Producing class lists
  • Keeping and filing records
  • Analyses of attendance and results
  • Writing reports
  • Ordering supplies and equipment.
  • Producing formal minutes of meetings
  • Submitting bids 

In Latvia, the Ministry of Education were able to achieve time savings of 30% by deploying SharePoint Server across 100 schools. This allowed them to automate routine grading tasks and reporting, delivering significant time savings for teachers. 

For a report on how ICT helped UK teachers reduce administrative burdens, click here.

Managing Baseline Administrative Data and Information

Whilst different countries have different mandatory requirements for essential data that they expect schools provide, UNESCO (2003) has set out a recommended specification of essential data to collect at the national level from each education establishment.

Data on students Data on teachers and other categories of personnel
Distribution by grade, gender and age Distribution of teachers by level of qualification and certification, by grade and by gender
Distribution of repeaters by gender and grade Distribution of teachers by age and by gender
Number of learners attending double-shift classes by grade. Number of teachers working double shifts
Data on education establishments Number of teachers in multi-grade classes
Number of classrooms Number of non-teaching personnel by categories, age and gender.
Places available in schools Distribution of teachers by level of qualification and certification, by grade and by gender
Education expenditures Distribution of teachers by age and by gender
The budget as part of the overall State budget (budget voted and budget disbursed) broken down by level Number of teachers working double shifts
The expenditures at the local level, of private organizations by level Number of teachers in multi-grade classes

Student Information Systems (SIS)

Schools need to keep records on their students which should, at the very least, include: 

  • Personal – name; address; photo; family contacts
  • Performance – actual and predicted grades; teachers comments
  • Attendance – by day, by lesson, over time
  • Risk profile – learning, social, medical and demographic
  • Intervention history – what assistance and guidance has been given to the student
  • Timetable

Scenarios

Student Access

Providing students with their own laptops for use at home has proven learning impact

A study by the UK Institute of Fiscal Studies in 2009, shows that “learners who use a computer at home for schoolwork could get as much as ½ a grade to their General Certificate of Secondary Education (GCSE) examination results and as much as a term on to their GCSE learning”. No surprise then to see the explosion of national level projects for the wide-scale introduction of ‘personal learning devices’. However, many of these schemes wrongly focus on a ‘blanket’ approach of providing huge numbers of cheap portable PC’s. Unfortunately most of these projects have been driven by getting the most computers for the lowest price, rather than focusing on getting the right device for the learning that needs to be done.

To get the best return on investment a device for students should have the following features:

  • Provide a platform for use of the widest range of productivity, creativity, and communication and collaboration tools
  • Result in users acquiring relevant knowledge and employability skills  
  • Have a display of around 13 to 15 inches
  • Have software that makes learning accessible to all, including those with disabilities
  • Capable of being managed remotely and as part of a managed network
  • Sharable with other users  
  • Battery life should exceed 3 hours under full CPU load with full screen brightness
  • Appropriate ports to allow them to connect to other equipment
  • ·Wireless networking capability
  • Be self-contained and work without needing high levels of internet access once set up
  • Protected from viruses, spyware, and other malicious software
  • Hard Drive encryption for security

One of the advantages of giving students a PC – as opposed to lower specification devices – is that they can share them with family and friends, amplifying the effects of the investment. For example, Mouse Mischief enables students to share applications extending the use of the device.

Classroom

Ideally, students will be able to bring their laptops into the school and make use of them within a managed network, but this takes time, so a more likely scenario in the Enhanced phase is that students use shared computer resources at school. In this phase, there is likely to be an ICT suite with enough computers to take at least 30 children sharing a computer in pairs. Computers will also be found in other learning spaces in the school to support the kind of learning scenarios mentioned above. The computers that were originally used in the school can now be distributed throughout the school, some of which can be used as Thin Clients networked to the Server and/or Windows Multipoint Server.

Of course, computers aren’t the only hardware devices used in the classroom. Digital cameras; video cameras; voting devices; interactive whiteboard tools; robotic kits; digital microscopes; and projectors all have a role to play in the learning process in the Enhanced phase.

School

With ICT across the school, there is need for an organised network to manage ICT services. Learning content, devices, peripherals, access, administrative processes and users. Connecting with a local authority, state or national level learning content service is crucial, and this has to take place within a secured environment. The school will also need to connect to secure Local Authority services within a Wide Area Network.

An important question in this phase is how to manage e-mail. This can be done “on-premises” using server software such as Exchange Server; as a ‘rented’ service such as Exchange Online; or as a free “commodity” type service such as Office 365 for Education. The answer depends on the amount of resource available to manage the service, and the degree of control that a school wants to have over e-mail policy. Increasingly email – along with services such as calendaring and personal file storage – are commodity services that institutions are happy to see moving into the Cloud.

School managed network conceptual design

For a useful document from BECTA that sets out key considerations for school ICT network design, click here.

 Another useful document that considers the full range of devices that a school in the Enhanced phase could use is the Computer Sustainability Toolkit.

Local Authority – MoE

With a system in place for collecting baseline administrative data, there now needs to be a continuous flow of information between schools, the Local Authority and Ministry of Education with budget allocations flowing downwards and reporting on performance flowing upwards. This has to be achieved through a Wide Area Network to ensure the secure transfer of data. Several technologies are available for this including “Leased Line”, “Circuit Switching”, “Packet Switching” and “Virtual Private Networks”.

Wide Area Network between school and "upstream" authorities

As we saw above, the Local Education Authority of Rio City also provides learning content and collaboration services to schools. These can be delivered as a web service from a data centre.

Technical Requirements

The foundation on which the entire schooling architecture is built is called “Optimised Infrastructure”. This provides a scalable, secure platform which can be built on to provide a growing number of services.

Key capabilities of an Optimised Infrastructure are:

Security

The key component without which none of this will work is stringent security and networking protocols. This is needed to protect students and employees from unauthorised users, viruses and unsuitable content. Security systems should automatically identify threats and respond automatically.

Local Area Network (LAN)

Computers need to be connected to a LAN – wired and/or wireless – with a server that controls the network, stores files and enables printing. A classroom might have just a few computers that all the students take turns using, so it’s important that an educational computer be configured just the way the teacher wants.  The teacher shouldn’t have to waste valuable teaching time troubleshooting.  Each PC in a LAN needs to be “locked down” and reset easily. 

Data Protection and Recovery

As ICT becomes increasingly “mission critical”, it’s important to manage data so it can be rapidly recovered.  When infrastructure is fully optimised, recovering information should be as simple as browsing the network. Backup devices are now very cheap to buy and manage, and will automatically run in the background.

Identity and Access management

Identity and Access Management can help organisations centrally manage user information and access rights. It allows administrators to manage each student, teacher, administrator individually by setting their role, access and functional level.  This enables individual users to have information and software tools that are specific to their individual requirements – a personalised IT service.  A directory service holds each user account and its access functions and allows the user to access various systems using the same set of credentials. Authentication can be by various mechanisms such as logon credentials, smartcards, and biometrics.

Desktop, Server and Device management

In an optimised infrastructure, those responsible for the management of networks have the tools to control their IT infrastructure; easing operations; reducing troubleshooting time; controlling quota; password re-setting; provisioning users; improving planning capabilities; and managing mobile devices.   

Integration and Interoperability

A key goal of optimising infrastructure is to integrate different systems so they can exchange data. The advantage of this is that data only has to be inputted once, and then used by multiple systems saving time and money.  Ideally data in Student Information Systems, Teacher Administration and Accounting Packages will interoperate, saving teachers and administration staff from having to re-key in data every time they wanted to update records or produce reports. 

Database Services

Databases are the “engines” of information management. They are used to capture, store, analyse and interpret a wide variety of information, and deliver this information to a range of different applications and devices including servers, desktops and mobile systems. Data includes text, numbers, pictures, video streams, audio content, and geo-spatial information. Not only do databases store data but they interpret, index and enable it to be searched.  

Technical Support

Schooling system networks need to be reliable to encourage user confidence and to support learning and teaching, as well as school management and administration.  This requires access to technical support, which can come from technicians within the school, or from another provider, or sometimes from students themselves. In an optimised infrastructure, schooling systems need to move away from a reactive system in which incidents are dealt with only as they arise. Instead they need to create a more pro-active system where technical support prevents problems occurring and ensures that individual ICT systems are robust and reliable and available when required.

Architecture

Bringing all this together the overall architectural model for a school in the “Enhanced” phase looks like this:  

Schooling Technical Architecture - essential building blocks

Conclusion

It’s often harder to take the second step than the first. Indeed, moving from PCs in a single location to an integrated and managed network has many challenges. The advantages well outweigh the challenges because by developing the school’s technology in this way, students gain access to a wider range of learning opportunities, develop more skills and knowledge. Teachers can use ICT to engage better with students and their parents, and school administration can improve enabling more effective use of resources.

In the next article in this series, we will explore the next phase – moving from using ICT to enhance existing operations to using ICT to drive strategic change.   

Cloud Watching #4 – Managing Learning Content

In the old days it was simple. Agree a curriculum; approve and distribute the books; get teachers to push the contents into empty minds.

Since then everything has changed, especially:

  • The need for students to learn more effectively
  • Student’s appetite for active rather than passive learning experiences
  • Explosive growth of content and ease of access to it

So what does all this mean for learning content, and how it gets managed? On the one hand it could mean chaos as schooling systems deal with extreme complexity – infinite permutations of content types, authoring, storage, categorization, search, access, retrieval, and rendering methods. On the other hand, managed properly, it means the right content built or used by the right person at the right time – making learning significantly more effective. The ease with which ideas, concepts and knowledge are acquired by learners is a function of the availably of engaging learning content and how it is used, so managing content effectively is critical to improving learning effectiveness.

It’s no longer sufficient to think of learning content as a one-way street terminating in the minds of “empty headed” learners. It’s pretty clear that learning is much more effective when students create content rather than just consume it, and the proliferation of easy-to-use content development tools means that students themselves can produce professional standard learning content.

Given the explosion of web content and ease of access to it, the role of publishers is changing quickly too. Publishers have long been considered bastions of authoritative content, but back in 2005 Nature Magazine concluded that Wikipedia and Encyclopedia Britannica were virtually equal in terms of the accuracy of their scientific articles. The challenge for publishers now is to be authoritative, relevant and engaging – not just providing the answers but the conditions in which learners construct their own answers. Learning content has to become much more interactive, immersive, challenging and fun, and it also has to connect to systems that enable intelligent intervention, manage the learning process, and provide analysis.

Schooling systems are faced with bewildering choices when it comes to architecting Learning Content Management Systems (LMCS), so a good place to start is with some questions about what outcomes should be expected from investments in this space. E.g. how do we:

  • Manage content to ensure that the most effective learning takes place
  • Exploit content creation, management, and consumption technologies
  • Leverage new models of content production
  • Ensure that publishers can maintain profitability and invest in R&D
  • Minimise costs and maximise the “Content Economy”

To help frame this discussion we can look to the work of Microsoft Research and their Higher Education project entitled “Technologies for the Scholarly Communications Lifecycle”. Here they describe six distinct areas for supporting the lifecycle of scholarly content. Adapting this for managing learning content within a Schooling Enterprise Architecture we arrive at the following model:

Figure 1. Learning Content Lifecylce for Schooling Enterprises

But before we go any further, what exactly do we mean by learning content?

WHAT IS LEARNING CONTENT?

At one end of the spectrum there are widely available digital entities from which someone can learn – from sophisticated Silverlight or Flash applications to video clips to plain text. At the other end of the spectrum there are highly structured learning content packages designed to meet specific learning objectives.

A key concept in learning content is the “Learning Object” – a self-contained package, with a clear educational purpose containing –

  • Learning content – digital entities including text, images, sound, video
  • Learning tasks
  • Interface to a workflow system so the next learning task can be appropriately set
  • The means by which to assess what learning has resulted
  • Metadata including – learning objective; prerequisite skills; topic; the “interaction model”; technology requirements; educational level; relationships to other learning objects; rights

Ideally, it should be possible to:

  • Edit a Learning Object so it can be tailored to precise requirements
  • Group it into larger collections of content, including longer course structures

Conveniently, there is a standard for how learning objects should be constructed and used. The Sharable Content Object Reference Model (SCORM) is a standard that defines communications between content learning management systems, and how a learning object should be packaged into a transferable ZIP file. (See below for further details).

Advances in technology are also changing views about what actually counts as content.  For example, it could be argued that threads of dialogue through blogs, wikis and instant messaging are forms of content production.

CREATING LEARNING CONTENT

The old steps-and-stages, linear, age-cohorts and classes-dominated, subject-orientated curriculum is being superseded. Its successor is a “Thinking Curriculum”, based on a search for knowledge, on developing competencies rather than consuming content. The Thinking Curriuculum is information rich, multi-layered, and connected.

With the creation of high quality content relatively easy to accomplish, we have to ask a fundamental question – “who gets to produce learning content?” As explored in “High Performance Schools” a key way to get effective learning is to get students to create their own content then get peers to review it. With cheap webcams; basic video editing software; drawing, graphics, and productivity software; web development and portal tools, its increasingly easy to get great results from this approach.

There will always be a role for professionally produced, authoritative content. However, the world of publishing needs to embrace the idea that students and teachers will increasingly want to build their own learning resources from individual learning objects, in much the same way as building models using Lego®.

MANAGING CONTENT

There are essentially two types of content – structured and unstructured. Structured content is that which has been classified, and stored in a way that makes it easy to be found and used. Unstructured content is all other content.

Imposing structure and order on the exponentially expanding unstructured world of user-generated content is a major challenge for all organizations.

 

Figure 2. Unstructured content grows exponentially

Key concepts in Content Management include:

  • Document Management
  • Web Content Management
  • Rich Media Management
  • Archiving and Library Services
  • Scanning (Image and Capture)
  • Document Output Management
  • Workflows
  • Learning Process Management

Learning Content Management Systems (LCMS) help schooling systems organise and facilitate the collaborative creation of learning content, providing developers, authors and subject matter experts the means to create and use learning content. They enable the management of the full life cycle of content – from initial creation to consumption and re-creation by end users. They feature repositories, library systems, curriculum frameworks, curriculum systems, curriculum exemplars and resource assemblers.

A LCMS enables:

  • Efficient search and retrieval
  • Ease of authoring across a learning community
  • Rapid customisation for various audiences

An LCMS should enable seamless collaboration between subject matter experts, designers, teachers, and learners. It should enable content to be made available through a wide array of output types – such as structured e-learning courses, lesson plans, single learning objects – and output devices such as PC, phone or TV.

Learning Content Management Systems differ significantly from Learning Management Systems (LMS) in as much as an LCMS should be used to “feed” content to one or more LMS.

Figure 3. LCMS feeds learning content to LMS

Key LCMS Functions

Based on the Association of Information and Image Management’s specifications, a Learning Content Management System should have the following features and functions:

Categorization/Taxonomy

A taxonomy provides a formal structure for information, based on the specific needs of a schooling system. Categorization tools automate the placement of content (learning objects, documents, images, email, text etc) for future retrieval based on the taxonomy. A key question is who is responsible for and allowed to categorise content, and edit the categorisation data?

Indexing

Additional meta-data supporting information retrieval – this can be based on keywords or full-text.

Document Management

Document management technology helps organisations better manage the creation, revision, approval, and consumption of documents used in the learning process. It provides key features such as library services, document profiling, searching, check-in, check-out, version control, revision history, and document security.

Web Content Management

This addresses the content creation, review, approval, and publishing processes of Web-based content. Key features include creation and authoring tools, input and presentation template design and management, content re-use management, and publishing capabilities.

Digital Asset Management (DAM)

Similar in functionality to document management, DAM is focused on the storage, tracking, and use of rich media documents (video, logos, images, etc.). Digital assets typically have high intellectual property (IP) value.

Repositories

A repository can be a sophisticated system that costs hundreds of thousands of dollars, or a simple file folder system. The key is to have information that can be found once it is placed in the system.

Syndication

Distribution of content for reuse and integration into other content.

Personalization

Based upon data about student learning history, their learning styles and what they next need to learn, types of content and specific learning objects can delivered to best match the student’s needs.

Search/Retrieval

One of the greatest benefits of a well architected LCMS is the ability to get out what you put in with the minimum of effort. Indexing; taxonomy; repository services; relevance; and social cues should make locating specific content in a schooling system easy. Search functions should include:

  • Best Bets
  • Metadata-based Refinement
  • People and Expertise Search
  • Recently Authored Content
  • Defined Scopes
  • Focused Search – site, local, enterprise and web
  • Taxonomy and Term Store Integration
  • View in Browser

Infrastructure Technologies

Supporting these functions are core infrastructure technologies including:

  • Storage
  • Content Integration
  • Migration
  • Backup/Recovery

DRM

Protecting copyrighted content is essential to drive a vibrant “Content Economy”. Ensuring that creators of content get what they deserve for their work is a cornerstone of the Knowledge Economy – the development of which is the aim of many governments. DRM does this by encrypting content to limit usage and copying to limits agreed between the publisher and the customer.

EXPOSING CONTENT

Producing content and storing it is relatively easy, but organizing it to make it easy to find is an altogether different matter. People in large enterprises spend huge amounts of time looking for content, and making it easier to find specific content in schooling systems is core to making them more effective.

Search can help, of course, but the key to making content easy to find is in structuring it well. There is no one right answer for this, but one way of thinking about it is to start by categorising people first and then categorising the content:

Communities

Ideally, content should be exposed to people according to what role they have in the organisation – this is known as “role-based” knowledge architecture. A teacher, for example, should be able to access different content to learners.

Sites

Once communities of users have been defined, sites can be created to serve their specific content needs. Sites are aggregation points for a mix of types of content and methods for surfacing this content.

Libraries

Within a site there can be several libraries, each one categorising content by subject, topic, phase of learning, etc. Categorised content should contain metadata making it easier to find what the user is looking for.

Galleries

For more visual content, it may be easier to flick through a set of images for the user to find what they are looking for – galleries provide this function.

Wikis

A wiki is a website that allows the collaborative creation and editing of interlinked web pages via a browser. This technology has been around for at least 15 years, but its use as a general teaching tool is still in its infancy. However, an increasing number of universities are now adopting them as a teaching tool – see http://www.nytimes.com/2011/05/02/education/02iht-educSide.html?ref=education.

Blogs

Personal spaces for building and publishing content such as blogs or “MySites” give users a way of quickly exposing their thinking to a wider audience to express viewpoints and get feedback.

Figure 4. Structuring content starts with classifying users

LEARNING CONTENT MANAGEMENT ARCHITECTURES

Key Concepts

Roles

A key starting point in architecting a LCMS is determining who the users of the system are and what roles can be assigned to them.

Across the schooling enterprise publishing house staff, experts, teachers, teaching assistants, administrators, students, even parents could all – in theory at least – take on one or more of these roles:

  • Creator – responsible for creating and editing content.
  • Editor – responsible for tuning the content message and the style of delivery, including translation and localisation.
  • Publisher – responsible for releasing the content for use.
  • Administrator – responsible for managing access permissions to folders and files, usually accomplished by assigning access rights to user groups or roles. Admins may also assist and support users in various ways.
  • Consumer, viewer or guest – the person who uses the content after it is published or shared.

Questions raised by the SULINET experience, suggest the following considerations:

  • Who is the principle audience – teachers, students, parents?
  • Who can publish – teachers, students, parents, experts, 3rd party publishers?
  • What incentives are there to encourage contributions?
  • How will Quality Assurance work?
  • What about peer review/rating systems?
  • Should all contributors be allowed to create, publish or edit a Learning Object?
  • Who is the legal owner of a Learning Object – teacher, school, and district?
  • How will logical groupings work? Is it possible/desirable to have national level admin and users, or should groupings work at lower levels such as:
    • District or conglomerate of schools
    • Individual School
    • Grade levels (Eg Year 10)
    • Subject areas (Eg Maths)

Standards

Another key consideration is the role of standards. There are many standards covering content, and the following are the key standards specifically designed for learning content:

SCORM – Sharable Content Object Reference Model – is a collection of standards and specifications for learning objects (Shareable Content Objects, or SCOs). It defines communications between learning objects and a host learning management system. SCORM also defines how content can be packaged into a transferable ZIP file called “Package Interchange Format”. SCORM defines:

  • Content Aggregation Model
  • Runtime Environment
  • Sequencing & Navigation

IMS Global Learning Consortium is concerned with establishing interoperability for learning systems and learning content. IMS publishes specifications for content packaging, enterprise services and digital repositories.

Dublin Core. Defined by the International Organization for Standardization (ISO) The Dublin Core provides metadata descriptions for most learning resources – digital and physical – so they can be described and catalogued. Implementations of Dublin Core typically make use of XML.

CDN

A content delivery network or content distribution network (CDN) caches data at various nodes of a network. A CDN can improve access to the data it caches by increasing access bandwidth and redundancy and reducing access latency. Data content types often cached in CDNs include web objects, downloadable objects, applications, realtime media streams, and database queries.

Blobs

A blob (alternately known as a binary large object, basic large object, BLOB, or BLOb) is a collection of binary data stored as a single entity in a database management system. Blobs are typically images, audio or other multimedia objects, though sometimes binary executable code is stored as a blob.

Scenarios

In the simplest model, the “industrial schooling” approach of pushing book based content into the “empty minds” of learners is digitized:

1. Government sets the curriculum

2. Publishers convert curriculum into content

3. Schools buy content

4. Teacher delivers content

5. Students receive content

Figure 5. Top down approach has limited effectiveness

The SULINET example featured earlier in this blog offers a more sophisticated, “connected learning community” approach. Here, reusable combinations of learning units are stored in a central database. Classification, and the use of metadata and sophisticated enterprise search, makes it easy for users to locate and retrieve content. The smallest digital objects can be independently used or combined together to form learning objects. A curriculum editor application enables users to develop their own learning content.

Extending this further still, in the model below the central repository is connected to external content publishers, online content market places and the worldwide web.  It exploits Cloud technology to drive out infrastructure and management costs; enable flexible scale; and increase reliability and speed.

1. Publishers research and develop new learning packages and make these available for different learning styles

2. Teachers look for materials for specific learning opportunities, and assemble objects into packages for students

3. Teacher assigns learning packages to students

4. Students work in teams to create new content from learning packages

5. Students submits assignment to teacher

6. The best new content from teachers and students gets added to content repository

7. The repository receives content through online market places and the web

8. Standards and processes are overseen by curriculum content committee which uses data to make editorial decisions

Figure 6. An integrated “learning content economy”

Conceptual Design

Converting this usage scenario into a high level conceptual design, we can break down the key processes into three chunks – Creation; Management and Consumption. As discussed at the outset, however Consumption and Creation should increasingly be seen as part of the same process – ie learning is part-consuming and part-producing content.

Figure 7. Conceptual design for a Cloud based Learning Content Management System

Key Products

Creation

Technologies such as Expressions, Visual Studio, and the Adobe Creative Suite are used extensively by professional content developers. DreamSpark is enabling a growing number of students to produce professional quality content too.

Management

Windows and SQL Azure

In the above Schooling Enterprise Architecture Learning Content Management model the core Cloud based content management technologies are Windows and SQL Azure, and the following features are exploited:

  • Compute is a service which runs managed applications in an Internet-scale hosting environment.
  • Storage stores data including blobs – large binary objects, such as videos and images.
  • AppFabric manages users’ permissions and authenticated use of web applications and services, integrated with Active Directory and web based identity systems including Windows Live ID, Google, Yahoo! and Facebook.
  • Content Delivery Network – places copies of web objects (images and scripts), downloadable objects (media files, software, and documents), applications, real time media streams, and other components, close to users. This results, for example, in the smooth streaming of video to Silverlight and Android clients without requiring any software development, management or configuration.

Figure 8. Windows Azure CDN speeds up delivery of content

  • Marketplace – data, imagery, and real-time web services from leading commercial data providers and authoritative public data sources. The Windows Azure Data Marketplace will also contain demographic, environmental, weather and financial datasets. An Application Marketplace will enable developers to easily build applications for Azure.

SQL Azure can also be exploited to provide the following services:

  • Database relational database, providing services to multiple organisations.
  • Data Sync – synchronisation between an organisation’s current SQL on-premises databases and SQL Azure Databases in the Cloud.
  • Reporting – a complete reporting infrastructure that enables users to see reports with visualizations such as maps, charts, gauges, sparklines etc.

Live@Edu

Live@Edu provides a suite of communication, collaboration and storage services for students. It also provides a single account and password for access to many Microsoft Cloud services including Windows Azure. Later this year, Live@Edu will be superseded by Office 365 for Education.

SharePoint Online

SharePoint Online offers a core set of Content Management capabilities including:

  • Document Management
  • Collaboration (team sites), Extranet
  • People Search
  • Content Search
  • Social Computing – including wikis and blogs
  • Publishing Portal (custom theming/branding)
  • Rich Media Management
  • Data Visualization
  • Workflows

 

Figure 9. Through SharePoint, end users get a “control panel” for consuming and creating learning content

Through the SharePoint portal, end users can quickly find the learning content they need, consume and create new content with others, and publish this to a wider connected learning community.

Consumption (and recreation)

Silverlight

Silverlight is a great way for learners to experience learning content. A free, cross-platform browser plug-in, Silverlight is designed for Web, desktop, and mobile applications – online and offline. It supports multimedia, enhanced animation, webcam, microphone, and printing.

Microsoft Learning Content Development System (LCDS)

LCDS is a free tool that enables users to create interactive, online courses and Silverlight learning objects. It can be used to create highly customized content, interactive activities, quizzes, games, assessments, animations, demos, and other multimedia.

Office

PowerPoint is the most widely used content creation tool in schools, and many schools create highly interactive and challenging content with it, eg: see this archive at the University of North Carolina Wilmington

MediaWiki extension for Word allows learning materials developed in Microsoft Office to be saved directly to MediaWiki-based repositories such as WikiEducator.

To create SCORM objects with relatively low levels of technical skill, Hunterstone’s Thesis “Light” is available as a free download with Learning Essentials for integration into Microsoft Office for easy application of the (SCORM) learning content standards to Office documents.

OneNote

Whilst designed as a personal productivity application, OneNote isn’t an Enterprise wide content management solution – however used in the right way, it can be a quick and cost effective way to enable content development, management, search and retrieval amongst small, distributed groups. For example, a teacher could have a “master” OneNote file held on a Windows Live SkyDrive site (in the Cloud). This can contain several “books”, each book sub divided into classes with learning content – videos, links, text etc. Each class can then be further subdivided with an area for each learner. In this way, a Science class – students and teacher, for example, can collaborate with Science classes in other schools.

 

Figure 10. OneNote enables small-scale learning content management

Looking to the Future

HTML 5

The next version of HTML – a language for structuring and presenting content for the World Wide Web – will have profound implications for how learning content can be consumed. It will encourage more interoperable learning content solutions, and will make it easier to include and handle multimedia and graphical content on the web without having to resort to proprietary plugins and APIs.

Conclusion

Providing students with the right kind of learning content at scale is a critical component in making schooling more effective. It’s no longer sufficient to think of content systems as delivery mechanisms, rather they should be thought of as integrated “learning content economies” where learning value is added by all participants and stakeholders. Cloud computing can help facilitate this new approach, driving down costs, increasing connectivity and collaboration, and enabling scalable, flexible and highly available learning content management systems to emerge.

Thanks to David Langridge, Brad Tipp and Sven Reinhardt for support in writing this article.

How to Connect a Learning Community – Israeli Municipalities Show the Way

The challenge for the Israeli city of Ramat Gan was how to build a platform to connect students, parents, teachers and external experts – and deliver a set of learning services to enable students to go from mememorizing content to building analytical and synthesis skills. Ramat Gan, well known for international high tech businesses, also needed a sytem to enable students to aquire in-demand high level technology skills.

The solution – a “Learning Gateway” based on SharePoint 2010 and Live@Edu – delivers a spectrum of communication and collaboration tools, learing content, and applications.

Watch the video here:

Further north a different set of needs resulted in a similar solution being developed. Schooling for 50,000 K-12 students students in the city of Haifa was being distrupted by conflict, so a way to ensure continuity of schooling services had to be found.  The answer, again, was a Learning Gateway solution that delivers a range of learning services to all students in the city, regardless of whether they are working from home or in school.

Watch the video here:

Thanks to Bar Israeli.