Taking the Next Steps – the “Enhanced” Phase

This is the second in a series of articles that aim to help schooling systems develop their technology, the first being “Taking the First Steps“.

There are four distinct phases through which technology in schooling evolves. The first phase is characterized by access. In this phase, giving students and teachers access to computers to improve some aspects of lesson delivery and administration is the main focus. In the next phase, technology is used to enhance existing processes. It’s about providing content and tools to increase learning, organising communications and starting to manage data and information. The third phase is characterized by using technology strategically. No longer is technology considered a “bolt-on”, or “veneer” on top of existing processes – it now helps drive schooling towards strategic goals such as significantly improved learning and better return on investments. In the final phase, leading edge schools use ICT to transform their operations, using it to personalize learning, integrate deeply with the wider community, run extremely efficient administration systems and develop a culture of performance.

Four phases of ICT development in schooling

The “Enhanced” Phase

Goals

The goals of the Enhance Phase of ICT development are to:

  • Increase learning
  • Improve communications with parents
  • Manage data and information

Increasing Learning

In this phase, computers are available in several areas of the school, some in labs, and others scattered in classrooms and other learning spaces. These computers are connected together in a network and key resources, such as content, printers, scanners, and users are managed centrally.

Students use computers as a learning tool – e.g., using multimedia learning packages; solving maths problems; researching; reading from e-books; developing writing skills; learning languages; and developing 21st Century skills.

Curriculum Area Examples

Language
Hyperlinks allow more creativity in narrative construction
  • Word structure and spelling
    • A great example of how to help children remember how to spell individual words is the “Look Cover Write and Check” web application on the Ambleside School site   
  • Composing and presenting
  • Learning foreign languages
    • Bilingual audio books combine rich graphics with spoken word for foreign language learning. Award winning Mantra Lingua have combined traditional print media with a “talking pen”.    
Mathematics
Making visualisations easy in Mathematics
  • Learning from feedback
    • Word processing software now enables students to “word process” maths to clearly show complex formulae, along with 2d and 3d graphs, making it easier to communicate their thinking and get feedback on it. Check out the free Math add-in for Word and OneNote.
  • Creating patterns
    • Students can use Logo software to draw patterns students quickly learn the importance of expressing their commands unambiguously and in the correct order
  •  Seeing connections
    • A software Graphing Calculator can be a great tool for teaching maths when used with a data projector for whole class teaching, or better still when given to students to use.  A lesson can be built up and stored then each stage “replayed”. Check out the free Microsoft Math 4.0 
  • Exploring data
    • Students can design surveys, such as the heights of their peers and teachers, and enter the data into a spreadsheet to learn about averages and correlations.
Science
 
  • Assisting observation
    • Electronic telescopes enable pupils to collect images from different locations on Earth and at different times of the day. Telescope sites also provide learning resources and galleries of images.  
  • Recording and measuring
    • USB microscopes and data loggers can be used in the classroom to observe, record results, plot graphs and analyse data. E.g. see this data logging programme from Kent which explores topics such as: most effective sunglasses; which surface will slow down the car? Who has the hottest hands; where is the noisiest place in school?
  • Providing models or demonstrations
    • Simulating experiments can enable students to experiment with phenomena that may be too slow, too fast, too dangerous or too expensive to experience in school. Check out Crocodile Clips’ Yenka for example.

An essential consideration is accessibility for all. For students with some disabilities, technology can open up new windows of learning opportunities. For a full explanation go to: http://edutechassociates.net/2011/03/08/accessibility/

A fantastic resource exploring different ways in which ICT can be used across the curriculum can be found here: http://archive.naace.co.uk/direct2u/indexbysubject.html

Additionally, worksheets with practical examples and screenshots explaining how to use ICT in Primary Schools are available here

Other resources developed for classroom use by teachers, for teachers can be found in the Teachers Toolbox and here.   

Managing Learning Content

When ICT is implemented, lots of content gets created.  In order to get maximum efficiencies from ICT, this content needs to be organised and managed in a way that means that people don’t replicate one another’s work.

At school level, content can be managed through a file sharing system on a server on a network. For example, Windows Server 2008 enables files to be centrally shared and managed. The “Shared Folders” feature enables file-shares to be created and permissions set, which will allow students and teachers to store their work.

At a more advanced level, content can be better managed using a portal such as SharePoint Server 2010. Combining content management with collaboration tools and powerful search, SharePoint makes information easy to find, share, and use.

Beyond the school, regions or even whole countries are beginning to provide organised learning content, as explored in the articles on SULINET and managing learning content.

In Brazil, for example, Educopedia is a learning content portal run by the City of Rio. Users are presented with a list of all of the elementary and middle school grades and under each of these they can access all the school curricula for each discipline.

Educopedia - learning content access made easy

For example, a teacher can click on a subject area link, and see a content index consisting of the school year course plan which contains the lessons and related curriculum standards.

Educopedia - making it easy to select resources related to curriculum standards

From there, they can download lesson plans with suggestions on how to make the best use of the resource materials available; a list of the skills and competences addressed; a PowerPoint presentation for classroom use; and a quiz with questions about the class content.

Educopedia - access to learning tools made easy

Educopedia also provides users with communication and collaboration functions through live@edu, which provides a mechanism for user authentication.

Parent Connection

The usual way in which schools communicate directly with parents is via “parent evenings” – many parents end up seeing a teacher once or twice a year for 5 minutes. Hardly enough time to say “hello” and “goodbye”. 

Research demonstrates that active parental involvement in educational activities delivers a positive impact on attainment. Technology can be used to connect parents with information regarding the educational progress of their child, and a range of supplemental activities in which the parent can support the learning process. For example, ICT can be used to:

  • Enable parents and teachers to communicate more frequently with each other
  • Identify problems and issues at an early stage and involve parents in rectifying them
  • Give parents the tools to support learning activities at home
  • Provide parents with immediate news about the school and its activities.

At a basic level, ICT can contribute:

  • E-mail news bulletins
  • Digital learning resources to assist the student with homework
  • Educational resources for parents, such as behavioural management guidance
  • Alerts on critical issues such as lack of attendance, dropping attainment levels, behavioural issues, etc
Miami Dade - enabling parents to see how their children are progressing and help with work at home
Miami Dade - essential information about children's school day made easily accessible
Managing Data and Information

Teacher Administrative Tasks

ICT can really help with reducing the time spent on teacher’s basic administrative tasks including:

  • Lesson plans and materials
  • Producing class lists
  • Keeping and filing records
  • Analyses of attendance and results
  • Writing reports
  • Ordering supplies and equipment.
  • Producing formal minutes of meetings
  • Submitting bids 

In Latvia, the Ministry of Education were able to achieve time savings of 30% by deploying SharePoint Server across 100 schools. This allowed them to automate routine grading tasks and reporting, delivering significant time savings for teachers. 

For a report on how ICT helped UK teachers reduce administrative burdens, click here.

Managing Baseline Administrative Data and Information

Whilst different countries have different mandatory requirements for essential data that they expect schools provide, UNESCO (2003) has set out a recommended specification of essential data to collect at the national level from each education establishment.

Data on students Data on teachers and other categories of personnel
Distribution by grade, gender and age Distribution of teachers by level of qualification and certification, by grade and by gender
Distribution of repeaters by gender and grade Distribution of teachers by age and by gender
Number of learners attending double-shift classes by grade. Number of teachers working double shifts
Data on education establishments Number of teachers in multi-grade classes
Number of classrooms Number of non-teaching personnel by categories, age and gender.
Places available in schools Distribution of teachers by level of qualification and certification, by grade and by gender
Education expenditures Distribution of teachers by age and by gender
The budget as part of the overall State budget (budget voted and budget disbursed) broken down by level Number of teachers working double shifts
The expenditures at the local level, of private organizations by level Number of teachers in multi-grade classes

Student Information Systems (SIS)

Schools need to keep records on their students which should, at the very least, include: 

  • Personal – name; address; photo; family contacts
  • Performance – actual and predicted grades; teachers comments
  • Attendance – by day, by lesson, over time
  • Risk profile – learning, social, medical and demographic
  • Intervention history – what assistance and guidance has been given to the student
  • Timetable

Scenarios

Student Access

Providing students with their own laptops for use at home has proven learning impact

A study by the UK Institute of Fiscal Studies in 2009, shows that “learners who use a computer at home for schoolwork could get as much as ½ a grade to their General Certificate of Secondary Education (GCSE) examination results and as much as a term on to their GCSE learning”. No surprise then to see the explosion of national level projects for the wide-scale introduction of ‘personal learning devices’. However, many of these schemes wrongly focus on a ‘blanket’ approach of providing huge numbers of cheap portable PC’s. Unfortunately most of these projects have been driven by getting the most computers for the lowest price, rather than focusing on getting the right device for the learning that needs to be done.

To get the best return on investment a device for students should have the following features:

  • Provide a platform for use of the widest range of productivity, creativity, and communication and collaboration tools
  • Result in users acquiring relevant knowledge and employability skills  
  • Have a display of around 13 to 15 inches
  • Have software that makes learning accessible to all, including those with disabilities
  • Capable of being managed remotely and as part of a managed network
  • Sharable with other users  
  • Battery life should exceed 3 hours under full CPU load with full screen brightness
  • Appropriate ports to allow them to connect to other equipment
  • ·Wireless networking capability
  • Be self-contained and work without needing high levels of internet access once set up
  • Protected from viruses, spyware, and other malicious software
  • Hard Drive encryption for security

One of the advantages of giving students a PC – as opposed to lower specification devices – is that they can share them with family and friends, amplifying the effects of the investment. For example, Mouse Mischief enables students to share applications extending the use of the device.

Classroom

Ideally, students will be able to bring their laptops into the school and make use of them within a managed network, but this takes time, so a more likely scenario in the Enhanced phase is that students use shared computer resources at school. In this phase, there is likely to be an ICT suite with enough computers to take at least 30 children sharing a computer in pairs. Computers will also be found in other learning spaces in the school to support the kind of learning scenarios mentioned above. The computers that were originally used in the school can now be distributed throughout the school, some of which can be used as Thin Clients networked to the Server and/or Windows Multipoint Server.

Of course, computers aren’t the only hardware devices used in the classroom. Digital cameras; video cameras; voting devices; interactive whiteboard tools; robotic kits; digital microscopes; and projectors all have a role to play in the learning process in the Enhanced phase.

School

With ICT across the school, there is need for an organised network to manage ICT services. Learning content, devices, peripherals, access, administrative processes and users. Connecting with a local authority, state or national level learning content service is crucial, and this has to take place within a secured environment. The school will also need to connect to secure Local Authority services within a Wide Area Network.

An important question in this phase is how to manage e-mail. This can be done “on-premises” using server software such as Exchange Server; as a ‘rented’ service such as Exchange Online; or as a free “commodity” type service such as Office 365 for Education. The answer depends on the amount of resource available to manage the service, and the degree of control that a school wants to have over e-mail policy. Increasingly email – along with services such as calendaring and personal file storage – are commodity services that institutions are happy to see moving into the Cloud.

School managed network conceptual design

For a useful document from BECTA that sets out key considerations for school ICT network design, click here.

 Another useful document that considers the full range of devices that a school in the Enhanced phase could use is the Computer Sustainability Toolkit.

Local Authority – MoE

With a system in place for collecting baseline administrative data, there now needs to be a continuous flow of information between schools, the Local Authority and Ministry of Education with budget allocations flowing downwards and reporting on performance flowing upwards. This has to be achieved through a Wide Area Network to ensure the secure transfer of data. Several technologies are available for this including “Leased Line”, “Circuit Switching”, “Packet Switching” and “Virtual Private Networks”.

Wide Area Network between school and "upstream" authorities

As we saw above, the Local Education Authority of Rio City also provides learning content and collaboration services to schools. These can be delivered as a web service from a data centre.

Technical Requirements

The foundation on which the entire schooling architecture is built is called “Optimised Infrastructure”. This provides a scalable, secure platform which can be built on to provide a growing number of services.

Key capabilities of an Optimised Infrastructure are:

Security

The key component without which none of this will work is stringent security and networking protocols. This is needed to protect students and employees from unauthorised users, viruses and unsuitable content. Security systems should automatically identify threats and respond automatically.

Local Area Network (LAN)

Computers need to be connected to a LAN – wired and/or wireless – with a server that controls the network, stores files and enables printing. A classroom might have just a few computers that all the students take turns using, so it’s important that an educational computer be configured just the way the teacher wants.  The teacher shouldn’t have to waste valuable teaching time troubleshooting.  Each PC in a LAN needs to be “locked down” and reset easily. 

Data Protection and Recovery

As ICT becomes increasingly “mission critical”, it’s important to manage data so it can be rapidly recovered.  When infrastructure is fully optimised, recovering information should be as simple as browsing the network. Backup devices are now very cheap to buy and manage, and will automatically run in the background.

Identity and Access management

Identity and Access Management can help organisations centrally manage user information and access rights. It allows administrators to manage each student, teacher, administrator individually by setting their role, access and functional level.  This enables individual users to have information and software tools that are specific to their individual requirements – a personalised IT service.  A directory service holds each user account and its access functions and allows the user to access various systems using the same set of credentials. Authentication can be by various mechanisms such as logon credentials, smartcards, and biometrics.

Desktop, Server and Device management

In an optimised infrastructure, those responsible for the management of networks have the tools to control their IT infrastructure; easing operations; reducing troubleshooting time; controlling quota; password re-setting; provisioning users; improving planning capabilities; and managing mobile devices.   

Integration and Interoperability

A key goal of optimising infrastructure is to integrate different systems so they can exchange data. The advantage of this is that data only has to be inputted once, and then used by multiple systems saving time and money.  Ideally data in Student Information Systems, Teacher Administration and Accounting Packages will interoperate, saving teachers and administration staff from having to re-key in data every time they wanted to update records or produce reports. 

Database Services

Databases are the “engines” of information management. They are used to capture, store, analyse and interpret a wide variety of information, and deliver this information to a range of different applications and devices including servers, desktops and mobile systems. Data includes text, numbers, pictures, video streams, audio content, and geo-spatial information. Not only do databases store data but they interpret, index and enable it to be searched.  

Technical Support

Schooling system networks need to be reliable to encourage user confidence and to support learning and teaching, as well as school management and administration.  This requires access to technical support, which can come from technicians within the school, or from another provider, or sometimes from students themselves. In an optimised infrastructure, schooling systems need to move away from a reactive system in which incidents are dealt with only as they arise. Instead they need to create a more pro-active system where technical support prevents problems occurring and ensures that individual ICT systems are robust and reliable and available when required.

Architecture

Bringing all this together the overall architectural model for a school in the “Enhanced” phase looks like this:  

Schooling Technical Architecture - essential building blocks

Conclusion

It’s often harder to take the second step than the first. Indeed, moving from PCs in a single location to an integrated and managed network has many challenges. The advantages well outweigh the challenges because by developing the school’s technology in this way, students gain access to a wider range of learning opportunities, develop more skills and knowledge. Teachers can use ICT to engage better with students and their parents, and school administration can improve enabling more effective use of resources.

In the next article in this series, we will explore the next phase – moving from using ICT to enhance existing operations to using ICT to drive strategic change.   

Taking the First Steps

Year-on-year $64bn is spent on ICT for schooling, but many schools around the world have yet to take their first steps to introducing ICT. Whilst the most advanced schools in the world can take full advantage of ICT, large tracts of the planet still don’t have grid electricity.

Figure 1. Huge areas of the world have no electricity, leave alone Internet and ICT

In 2007, the number of people with PCs passed the one billion mark – still a relatively small portion of the overall world population. The digital divide is still a defining characteristic of our age, and introducing ICT into schools is one way that governments are attempting to tackle this.

When technology is first introduced into schools, it tends to be used to supplement existing operations and processes. Schools begin to see the potential for ICT but operate in a typical “factory” approach with most learning, teaching and operational activities based on paper and students “receiving” their learning from their teachers. Typically it starts with teachers using a single computer with a projector, merely enhancing traditional teaching methods. The focus of computer use is to develop basic skills and students take turns to use the computers in computer labs.

Figure 2. Throughout the world, “computer labs” are considered an important first step

Challenges

Whilst OLPC was commendable for a number of reasons, the programme has proved that there is a lot more to introducing ICT into schools than simply “dumping” large numbers of laptops into the system. A recent study highlighted the kinds of challenges that need to be addressed in order to take full advantage of ICT in challenging areas.

“What happens when a school located 40km from the nearest town is suddenly burdened with the impossible task of providing power to 300 OLPC laptops?”. One school visited on the study, had only one low-voltage outlet located in the principal’s office… Many off-the-grid schools will not have Internet access either”.

A large scale ICT roll-out assumes high quality administrative processes, but this isn’t always available either – many countries still don’t keep central records of what schools are where, or how many students attended which schools. In some schools, teachers are even held personally responsible for any losses or damages, leading to lack of deployment. Finding trained technicians, familiar with local infrastructure and technology who can install and maintain ICT is often difficult too.

After a deployment of nearly half a million laptops to Peru’s poorest schoolchildren, most children didn’t even bring the devices home. In Peru’s roll-out, children were held responsible for reimbursing the school for any damages, many of which could easily occur during long treks or drives in mountainous terrain. Parents of these children soon asked their children to use the laptops as little as possible, rather than risking losing an entire year’s salary paying for broken devices. Another problem in Peru was lack of literacy. “A large majority of the kids have no idea where keys are located and sometimes don’t even know the letters.” For ICT to be useful, software and keyboards need to be in the local native language.

According to the same study, “the vast majority of teachers only care about one program: PowerPoint. Without training and incentives, the use laptops in the classroom just reinforce old techniques”.

Figure 3. Often ICT introduction will just enhance old techniques

Schools often deploy their first computing equipment for up to 10 years. This means that multiple generations of software need to run on single instances of hardware deployments. Computer technology must therefore be able to handle old content as well as new content – including curriculum materials, multimedia content, as well learning software titles.  Running all that content on a PC is a key challenge. Combine these issues with the various support challenges associated with ageing PC hardware and the result is an environment where the challenges seem to outweigh the benefits.

Schools taking the first steps towards ICT usgage tend to be price sensitive and because of this, cheap devices are widespread and common, e.g. refurbished computers >5 years old. In some cases low cost hardware designed specifically for schooling use processors and other key components that are roughly 5 years behind a new mid-range device.

Power, internet, and air quality are all factors in the deployment of technology solutions into schools. PCs and devices have to ‘just work’ in the face of highly variable power sources – often going down for hours and then spiking up to 10X the voltage levels upon resumption. In addition, internet connectivity to schools may be non-existent or at best highly variable – maybe Dial-up speeds, and only for certain hours a day, week, or month. In addition, internet connectivity could arrive in a non-uniform way such as over a satellite downlink, a DVD update, or an offline cache of static internet content. Air quality can be highly variable also, which in computing terms means there might be significant dust, sand, salt, and moisture build up which can affect a device’s longevity if not properly designed for.

Technical Requirements

Technology for schooling in challenging environments needs to have two key characteristics:

  • Resiliency. Uninterruptable power supply and surge protection are good places to start. At the beginning of a school day all the computers in the school need to start from a last known good state. When a problem arises, logical choices and low-risk options need to be presented to the user.
  • Adaptability. A key requirement is that when the school wants to connect a new client device it should easily detect it on the school network and provide the client with access to all appropriate network services (file storage, printer access, Internet access, etc.). When a school wants to connect an LCD projector, the appliance should recognize and pre-configure this device so that it is truly plug-and-play without the user having to know what resolution it should be set at or the make or model number.  If a school has a lab with ageing PC hardware and software the option to turn that PC into a thin client will help to extend the value of the school’s existing investment and limit exposure to future technical frustrations of dealing with older configurations. As new form factors emerge, it should be easy for them to be assimilated into the school network.

Students need straightforward user experiences such as easy storage and access of their files, and straightforward ways to log-in and store and retrieve their work. Even at the most basic levels, students like to personalise their PC experience to create a greater sense of ownership.

Teachers are focused on achieving a teaching objective and have little time for experiment and discovery. They need tools that require little training to understand and use, and resilient devices that when support is required it can be applied with “one-click” – e.g. easy restore, reset student PC, etc.

ICT decision makers at municipality, state or country level will want to be able to show an impact on learning outcomes – ideally during their term in office – from their investments in ICT. They will want to be able to increase economic opportunity by increasing academic achievement, building ICT skills and enabling access to online information to “bridge the digital divide”. Total cost of ownership will be a key factor in making these decisions.

Adoption of technology will not happen at scale anywhere without local suppliers, system builders, system integrators (SIs) and independent software vendors (ISVs). In rural towns and villages, these are likely to be “small shops” and may be responsible for a full 360 degree service – deploying, training and supporting the school. Suppliers need systems that don’t require extensive additional training to sell, customise and deploy. Flexibility for what devices can connect to network allows local system builders to offer “system + devices” packages.

Scenarios

Kiosk

In 1999, Sugata Mitra installed a computer connected to the Internet in a wall in a slum area in India and found that children below age 13 learned to use and surf the Internet without even knowing English. They taught themselves to use the mouse, learned many games and programs like Microsoft Paint, searched Hindi Web sites, and even removed viruses from files. Many were completely illiterate and could not understand word patterns or pronunciation; others had reading problems and low test scores in schools. Nevertheless, they could “read” the names of applications and explain their functions, even when their position on the screen was changed. They also learned many English words heard from the computer’s speakers. Children found solutions in groups and taught each other.

This kind of computer needs to be in a safe public place that the children associate with safety, free time, and play. Children in the “Hole in the Wall” project self-organise their learning. They develop computer literacy, Maths and English skills, improve their social values and get better at collaborating.

These results are replicable in many different parts of the world where “Hole in the Wall” experiments have been carried out, and “learning stations” can be provided in countries like India at an all-in cost of around $0.03 per child per day.

Another study conducted in low-income and rural areas of India found that students who had free computer access at public kiosks performed better on science and math tests than students without such access – Inamdar, P. and Kulkarni, A. (2007).

Mobile Classrooms

In rural areas from Cyprus to Tunisia to India and even in the United States, busses and vans are frequently used to provide mobile ICT classroom facilities. For example, The Commonwealth Youth Programme Technology Empowerment Centre on Wheels (CYPTEC) enables students in villages in India to acquire ICT skills and become more employable. CYTPEC uses a van fitted with several desktop computers, mobile internet, and sound systems – all powered by a generator.

A typical mobile classroom will be equipped with the around 10 workstations, appropriate furniture, a server, physical and virtual security, broadband satellite/Wi-Fi/3G, audio-visual, videoconference equipment and off-grid power generation – and ensure that people with disabilities can use the facilities.

In a particularly innovative solution, the time used to take children back-and-fore to school in busses is used for learning. In rural Arkansas school buses shuttle some students for over two hours a day, so Hector School District has teamed up with Vanderbilt University to make the buses into “mobile classrooms”. One school bus has received mounted television screens that show math and science programs to students. Seats are equipped with headphones for the children to use.

A few years ago, literacy rates in the Western Cape in South Africa needed boosting. The Western Cape has 2000 schools, almost all of which are difficult to get to and many have no electricity. There are few teachers so teaching children to read and write is extremely difficult. The solution here is a mobile unit, a 4 wheel drive and a teacher trained to take children/adults through an intensive reading programme using voice recognition and basic literacy software on the laptops.

First School PCs

 

A good starting point for permanent ICT facilities in schools is a single PC in a shared space with a projector, screen and printer. A first step towards teachers exploiting the power of technology includes activities such as using a PC and printer to produce worksheets, and using the PC and a data projector to present learning content. Having soft copies of documents means that teachers are easily able to save and reuse resources, thereby saving time. In this model teachers have educational tools with immediate value, and this provides a foundation to grow the value of ICT investments. This scenario enables teacher-led activities using multimedia and educational content via an LCD projector where students are recipients of content (simulations, video clips, ppts, DVDs, etc.). Content can be delivered with or without access to the Internet through media-stored and cached Web-content.

Sharing applications is a good way to get maximum value from PCs. Using Mouse Mischief, approximately 5-25 students, each with his or her own mouse, can answer multiple choice questions or draw on a shared screen. Sample lessons can be found here.

In the first stages of implementing computers in schools, it’s critical that at least one computer is put to administrative use. This should be used for student and teacher records, funding, staff pay, course records, equipment inventory and operational purposes. Teacher’s time can be better used when replacing paper-based methods with electronic communication. Tasks such as basic record keeping, issuing standard letters and communications, and timetabling all become a lot easier when using ICT.

Computer Lab

 

Typically, a first step to providing classes of students with access will start with a “lab”. Decisions need to be made about arranging worktables, for example, U or L shapes allow group interaction. An “island” arrangement with two PCs on each side of a table works well and encourages students to share information. Students will typically use computers primarily for research – web, cached content, DVD – and productivity (e.g. word processing and spreadsheets). Computer labs need a server to enable:

  • File/print/back-up/restore
  • Teacher-driven classroom management & orchestration of client PCs
  • Labs to easily grow/upgrade with a range of different kinds of clients
  • Access to learning content

Making the computers available to the wider community when not being used by students has many benefits. A local pool of skills, knowledge and interest in ICT can be developed, and small charges for training can be made, helping to meet costs. To deliver this service to the community, schools need to provide secure access. PCs have high value, so physical and software security is also usually required – for example “Kensington® Locks”, burglar bars on windows, padlocked doors, biometrics, access controlled areas, storage units for laptops and other mobile technologies. Disablement and recovery security tools, and hard-disk encryption such as bit locker should also be used.

Building blocks

Electricity

In many parts of the world, the electricity supply to schools is a major issue, but there are a range of technologies that can address this. The main options for off-grid power solutions are solar power, diesel/biofuel generators, wind power, hydrogen fuel cell, moped and stove.

Figure 4. Solar panels in a school in South Africa

Of these, solar is an increasingly popular option, especially as the price of diesel fuel continues to rise, with companies such as Inveneo delivering solar based solutions. In a UNHCR deployment in a refugee camp, for which Microsoft provided the computing solution, electricity is provided through NAPS Universal Power Packs. One NAPS Power Pack provides power for an infrastructure module with server, printer, wireless router, and projector or teacher work station. Other NAPS Power Packs power 4 workstations, and these can be added to the network in groups.

No schooling system wants to waste electricity so several considerations need to be made:

  • Form factors matter. Even without adding a monitor, a typical desktop computer can consume at a minimum more than 3x the power that a laptop consumes. The extra electricity used by desktops tends to dissipate as heat, which in turn requires more power in the form of air conditioning to remove.
  • The age and price of the computer matter too. Typically cheaper and older desktop computers will consume more electricity than newer, better quality laptops.
  • The operating system. For example, Windows 7 was designed to be the most energy efficient operating system available and used in conjunction with the right hardware can deliver considerable savings, even on older hardware.

Internet Access

Figure 6. Wi-Fi in a school in South Africa

Where providing electricity is a challenge, providing Internet access can be even more so. For areas not able to get broadband/wired access, there are many Internet access solutions available, the key ones being:

Dial-up

This is one of the simplest and oldest forms of Internet access and uses a normal phone line to connect a computer to an Internet Service Provider. Its relatively inexpensive, and widely availability where phone lines are present, but it’s also the slowest form of access with a maximum speed of 56Kbps. Another problem is that in schools which have only one phone line, others cannot use the phone while the computer is connected to the Internet.

Cellular

Cellular-based access requires a cell phone network that offers 3G or CDMA 2000 data and voice services. A cellular modem is required to connect a computer or computer network to the Internet via a cell phone provider. Data services charge according to the length of time you are connected to the network and the amount of data transmitted and/or received. Access speeds range from 56Kbps to over 500Kbps. This speed depends on the type of service available, the strength of the cell signal, the distance from the nearest cell transceiver, and local physical environment factors. The advantage of cellular networks are that they are widely available, but relative costs and fluctuating speeds mean that it’s not the best option for always-on, shared access, and high volumes of data.

Satellite

Satellite access enables Internet access in rural and remote areas where copper wire and fibre based options are not available. This option requires installation of a satellite dish and receiver which is then connected to the Internet router. Speeds range from 64Kbps to 5Mbps uploading and 128Kbps to 11Mbps downloading. Because upload times are faster than download times, ‘latency’ (i.e. the time that it takes from mouse click to seeing content in the browser) is long. Satellite connections can also be affected by rain and dust storms. Whilst its available almost everywhere, a satellite link must be within the “line of sight” of transmitting satellites.

Wi-Fi, WiMax

These two forms of wireless Internet access are usually available in larger towns and cities. These can be used for the delivery of a service to a specific customer or to provide access across an entire city. Wi-Fi can provide “point-to-point” access to locations up to 30 Km away, but this demands clear-line-of-sight between the transceiver and the location it is serving, a directional antenna and wireless receiver. WiMax, which is less commonly available, only requires a WiMax receiver.

Caching

Regardless of what internet access model is used, caching can allow users to experience less of a delay when their PC requests data from the network. For example, Windows 7 BranchCache caches data locally, enabling a better user experience.

Devices

There is a huge temptation to buy cheap and low-impact devices, but a golden rule is to understand that you generally get what you pay for. For example, colour inkjet printers are usually the least expensive to buy but often have the highest per page printing costs. Same applies to computers – cheap computers are cheap for a reason and will probably end up costing more in the longer run through having to maintain sub-standard components and higher electricity consumption. As discussed, the best approach is laptops for which a typical entry-level specification is 3GHz (clock) speed, 500GB Hard Drive (HDD) with 2GB RAM.

There’s also a temptation to buy devices other than PCs, including some ‘slate’ devices which have been designed primarily for content consumption. As discussed in detail in the “Learning Software 2.0” article, enabling children to create content is far more important than just enabling them to consume it, so laptops have a far higher potential return on investment.

Projectors and screens are also essential hardware, and one clever solution from South Africa – the compujector – combines a computer and a projector in one device – see http://www.astralab.co.za

Wireless routers should be purchased with built in security, Virtual Private Network (VPN), Firewall, and Ethernet capabilities.

It’s important to consider cabinets for securely storing and charging laptops too. Sometimes called “Classroom on Wheels”, these enable computers to be taken to different parts of the school. Lapsafe, is one leading manufacture worth checking out.

Network Management

With power, internet access, security and the right kind of facilities in place, the next challenge is to manage the devices so they are used effectively. This means controlling how the computers are used – creating and managing accounts; sharing files and learning materials; installing applications; monitoring and managing usage and hardware; protecting computers from viruses etc.

Figure 7. Windows Mulitpoint Server – controlling a mix of client computers

Windows Multipoint Server 2011 provides a solution which enables one computer to be used by up to 10 users, each with their own monitor, keyboard and mouse. This approach lowers the total cost of ownership by 66% compared to a traditional PC deployment, which typically uses a model that requires separate servers to enable file and hardware sharing, and computer management. WMS 2011 also enables teachers to easily control a classroom network, including networked client devices such as laptops. This was put to great effect in Haiti where, following the recent earthquake there, computer labs were hastily assembled with off-grid power solutions to deliver learning services.

Training

At this stage, training is about two key things – acquiring basic computing concepts and learning new pedagogic methods. Microsoft Digital Literacy helps students learn and assess their understanding of basic computing concepts and acquire 21st Century skills; and training for teachers in new pedagogic methods, which organisations such as Education Impact can provide .

Architectures

The main building blocks for introducing ICT into schools are as follows:

Figure 8. Key building blocks for taking the first steps

Who owns the computer makes a lot of difference. This decision narrows the access option to 1:1 – one device per student. If students get to take them home, the need for secure storage and charging diminishes – on the assumption that the computers can be used throughout the school. This in turn leads to decisions about pedagogy – will usage be restricted to a single room, or will students use the devices from lesson to lesson?

Figure 9. Different access options

Finally, decisions about lab layout are important too. Here the options range from “traditional” to “collaborative”.

Figure 10. Traditional classroom layout

Figure 11. Collaborative classroom layout

Is it worth the effort?

Introducing ICT into schools for the first time is costly and time-consuming. In Queensland Australia, 20 preparatory steps are taken before laptops are introduced into schools. First-time ICT introduction into any organisation is a non-trivial task.

According to the World Bank, much of the rationale for using ICT to benefit education has focused on its potential for bringing about changes in the teaching-learning paradigm. In practice, however, ICT is most often used to support existing teaching and learning practices with new and expensive tools.

But the World Bank goes on to say “consensus seems to argue that the introduction and use of ICT in education can be a useful tool to help promote and enable educational reform; ICT is both an important motivational tool for learning, and can promote greater efficiencies in education systems and practices”. With $2.4trn/year spent on schooling, with some systems just 7% effective – YES! it simply has to be worth taking these first steps.

Resources:

Thanks to Nasha Fitter and Rob Bayuk.

Spotlight on Portugal

Whilst the Portuguese economy struggles, the country has recently had something to smile about – increases its international ranking in the latest PISA tables of educational performance.

Whilst any education improvement comes from sustained and integrated initiatives, it’s interesting to see that a major part of the effort to improve results focused on the use of ICT in schooling. A €1.5 billion investment has put 1.3m internet connected PCs in the hands of students and teachers across Portugal. Recent surveys have shown that 98 per cent of pupils say they are using computers and 78% of Portuguese children had access to the internet – a major improvement form 2005 when only 31% of households used the internet.

As you’d expect with a project of this scale, there are a number of moving parts. Firstly, the e-escola scheme is providing every secondary student with access to a laptop and broadband. “E-kindergarten”, is an equivalent project for primary students. At the same time, the “e-teacher” scheme is providing all school teachers with laptops and training.

These schemes are executed through the e-scolinha programme. This in turn is funded by Foundation for Mobile Communications – a consortium that includes Vodafone Portugal, Portugal Telecom and Optimus (Orange). Some of the funding comes from cellular network licence tariffs, and student’s families contribute also according to their means.

Overall 40% has come from the secondary student’s families (laptops are free for primary school children); the mobile companies contributed another 40% from cellular network licence tariffs; and the government contributed 20 per cent.

Secondary students can purchase mid-high spec notebooks, whilst primary school children use locally produced Magalhães (“each child an explorer”) hardware based on the Intel Classmate made available under the Magellan initiative. Click here to see how Magellan PCs are helping primary students in rural areas.

The cost to secondary student’s families can vary from €20 to €50 a month depending upon income, and the initial cost of the laptops was €150. For those on the lowest incomes it is free.

Microsoft has been a key partner in this project, along with Intel and other major technology players – both local and multinational. To support this initiative Microsoft delivered a “Learning Suite“, knowledge-transfer, and training to teachers, ensuring that users could use Windows 7 and Office 2010. Click on these links for more information on Micrsoft’s involvement e-escola and e.escolinha.

Portugal has proved that its possible to deploy a 1:1 programme across an entire country. The key ingredients have been:

  • Public Private Partnerships
  • Cross-Ministry collaboration (the Ministry of Transportation and Telecommunication provided the impetus for this initiative)
  • Inclusiveness – making sure that teachers were on-board, trained and equipped.

For more information, click on these links:

(Thanks to Adelaide Franco and Erik Goldenberg for contributions)

 

Brazil – Moving Towards World Class Education

 

I had never considered air conditioning such an important classroom technology until I visited Escola Municipal Engenheiro Gastão Rangel in the outskirts of Rio de Janeiro. The sweltering heat, sparseness of the facilities, 30 teachers between 1000 students and overcrowded classrooms make this a brutal and challenging environment to teach and learn in. Within these tough conditions, however, are clear signs of deep and meaningful progress.

 

On the stage of the small assembly hall of the school stands Rafael Parente – a rare example of an Education Technology visionary who can actually “walk the talk”. Rafael works as Deputy Chancellor in charge of strategic projects in Rio’s Municipal Department of Education, where he developed Educopedia – a portal for lessons and content. Educopedia has 32 digital lessons for each curriculum area – one lesson for each week of the year – and provides opportunities for teacher-lead and independent learning. The Rio MoE are now in the midst of acquiring 100k netbooks for students’ use, and projectors, speakers and Wi-Fi connections in more than 400 classrooms so that Educopedia’s lessons can be projected by teachers.

The first phase of the Educopedia project took place with a large group of pilot schools between September and December 2010, and the feedback was very positive. The task for Rafael now is to win over the teachers in all of Rio’s schools. This means visiting as many schools as he possibly can to directly persuade the teachers to use Educopedia in their lessons. As in most Brazilian public schools, air conditioning, electricity, security and connectivity are all high priorities, so Rafael’s task is far from easy.  

What’s happening in Rio is indicative of what is happening across Brazil. There are an increasing number of pockets of innovation across the country, fueled by a growing acceptance for the need to modernize, and sustained support for ICT from the Federal and State Governments.

Brazil’s schooling system has benefited from sustained Government education reform over the past 15 years. According to “Achieving World Class Education in Brazil”, published by the World Bank in December 2010, the 2009 PISA results show substantial progress in education in Brazil. For example, since 2000 students have effectively gained a full academic year of Maths mastery. A key contributory factor to this progress is the increased use of data. A comprehensive index of school performance called IDEB (Indice de Desenvolvimento da Educacao Basica) is now used across the country. With an IDEB score for all but the smallest of Brazil’s 175,000 primary and secondary schools, 5,000-plus municipal school systems, 26 state systems and the federal district systems – every single segment of the Brazilian education system can benchmark how well its students are learning and how efficiently its school or school system is performing. Few other large federal countries in the world have achieved this.

However, Brazil still trails the OECD PISA average so there are no grounds for complacency. In order to sustain progress, Brazil needs to modernize further still – and with 50m in education, modernizing Brazil’s schooling system represents one of the biggest education challenges on the planet.

Taking a direct and comprehensive approach to modernising Brazilian public schools is Planeta Educacao – the education arm of Vitae Futurekids. With 900 staff and headquarters in Sao Paulo, Planeta Educacao recognizes the interconnectedness of everything in schooling systems. Roberta Bento, Vice President, Planeta Educação is a passionate believer in Brazil’s public schools – “Our programmes comprise a series of effective actions that involve students, directors, technicians, teachers and parents, promoting real changes in education. Our goal is the improvement in the performance of the student”. To that end, Planeta Educacao supply a total and integrated set of schooling services – infrastructure, technology (including products such as Office for Kids), programs and learning systems.

Other challenges that Brazil face are extreme distances and difficult-to-reach towns and villages. However, the Roberto Marinho Foundation – partners in the Educopedia project – has educated more than five million young people through high quality courses delivered through a combination of the television network, excellent books and trained teachers. Through the Telecurso project teachers were able to use satellite technology to interact with classrooms in the Amazon Forest.

In Pernambuco – in the north-east of the country – a network of schools called Procentro initiated in 2001 by Marcos Magalhães, president of electronics firm, Philips do Brasil, is proving that Public Private Partnerships can work in Brazil. Procentro has an annual dropout rate of 2%, much lower than the 17%  average for Pernambuco’s regular state schools. Click here for details.  

To underline the growing importance of ICT in the Brazilian Schooling System, Brazil has developed its own version of BETT. This year, Interdidatica will attract approximately 15k people to its tradeshow and 2.5k paying customers to its forum.

This year the theme of Interdidatica is “Innovation” – totally appropriate in a country with a strong tradition of engineering and innovation, e.g. aerospace giant Embraer. According to the World Bank, literally thousands of creative new programs and policies are being tried out at this moment across Brazil by dynamic, results-oriented secretaries of education. Few other countries in the world have the scale, scope and creativity of policy action that can be seen today in Brazil.

An inspiring example of innovation is Nave in Rio – a new high tech high school built out of a PPP between a Oi Futuro Fnd the State Government of Rio, aiming to prepare young people for careers in digital, entertainment and creative industries.

   

Not surprisingly, Brazil has a growing Education Technology Industry and a spectrum of innovative companies serve a growing education market. Gestar, for example, a Sao Paulo firm who developed the concept of “SRM” – Student Relationship Management built on CRM.

Then there is Grupo Positivo, the tenth largest computer manufacturer in the world who focus on education. They produce education software; run education portals; provide teacher training and educational and technical support for partner schools. Positivo even has its own university near its headquarters in Curitiba.

A significant success story coming out of Brazil is CDI – the Centre for Digital Inclusion founded by Rodrigo Baggio.  Brazil’s first campaign for donated computers was founded by Baggio, who then opened the first “Information Technology and Citizens Rights School” (ITCRS) in Dona Marta, a slum area in Rio De Janeiro. From these beginnings CDI grew to provide access to ICT to 1.3 million people 13 countries.

Right at the heart of ICT innovation in Brazil and with a string of successful implementations is Microsoft Brazil’s Education team, lead by Emilio Munaro. Working with all the major players, and innovative customers such as Instituto Ayrton Senna, SENAC, SENAI, SESC, Anhanguera, FIA, USP, Porto Seguro, Colégio São Luis, Microsoft is pushing the boundaries of using technology for maximum effectiveness in education helping deliver increasingly personalized learning services.

A concern raised by the World Bank in Achieving World Class Education in Brazil is that education spending is outpacing results. Brazil spends more on education than Mexico, Chile, India and Indonesia, which have similar demographic profiles. This means that there is a lot of scope for increased effectiveness from spending, and ICT, of  course, can play a major role in this.

With the advent of Cloud computing, the prospect of providing anytime anywhere learning for all is becoming realistic. It’s now time to consider how massive, cheap, and highly available computing services can be combined with a range of access technologies and high quality learning content, to open up learning opportunities for those in Brazil who are in the greatest need of it. Proof that access to ICT works for the poorest in society comes from some of CDIs case studies. With the prospect of the 2016 Olympics and the World Cup going to Rio; the discovery of oil off the coast of Brazil; a booming economy; and determined and innovative people pushing hard; there is every reason to believe that the next decade will see Brazil make significant progress towards achieving world class education for all.

BETT 2011 – Clouds, Rain and Immersion

The usual lousy London January weather didn’t stop huge crowds from decending on Olympia once again for the annual carnival of Ed Tech. Early indications from exhibitors at the show suggest brisk business and an ever increasing international dimension. And well worth the trip it was too, agreed the overseas visitors that I spoke to.

But behind the noise and eye-candy, what key areas of Ed Tech innovation were evident?

Three key themes emerged at BETT:

Immersive Learning Environments

Several companies showed Immersive Learning Environments, including this Immersive Room featured by RM in their “Learning Emporium”.

This allows children to act out scenarios in a wide variety of environments – from the London Underground to castles and historical street themes.

Also in the RM Learning Emporium were learning environments and workstations based on Lego, microsoprocessor building, and school radio:

There was a noticable increased focus on surface/table-top interaction displays, and a big increase in 3-D displays and 3-D glasses. Promethean has done some nice integration with PowerPoint as well.

Multitouch on whiteboards – eg Promethean’s “Touchboard” – also caused quite a ‘buzz’, as did RM’s new Slate, which also has mulitouch capabilies. This Tablet PC uses a 29.5cm multi-touch screen and runs on Windows 7. Designed specifically for schooling, it is packed with features including, camera, microphone, speakers and handwriting recognition software.

It was good to see a high amount of Slate innovation from ASUS, HP, Toshiba and ACER.  The ASUS Windows 7 Slate generated a lot of excitement.

Lots of gaming for education was evident, particularly for Maths and reading solutions for the Primary sector.  BrainPop, in particular, were very popular.

The Its Learning stand – featuring their VLE with Live@Edu integration – was packed.

Data driven decisions and cost saving

RM launched Beyond Data, a professional development programme designed to help teachers use data to make better decisions.

Great to see the innovations coming from these three companies too:

Another emerging theme is using ICT to help make cost savings, and Ray Fleming from Microsoft has collected a set of examples and summarised them in a new eBook – Saving Money with ICT.

As a tax payer I’m delighted to see my childrens’ school – West Hatch – increasingly viewing ICT as an investment. Here, they have significantly reduced the number of servers through virtualisation – making them web-based rather than keeping machines on site – which has saved £12,000 a year in reduced energy consumption and maintenance.

Windows MultiPoint Server 2011, which will be available in March, allows you to plug multiple screens into a single machine and gives each user their own virtual computer, with a full PC experience with multimedia, audio, USB ports etc – saving on hardware costs and power consumption.

Cloud

On the subject of cost effectiveness, Microsoft announced that 15 million students now use Live@edu, up from 11 million students just three months ago. Office 365 for education will be the successor to Live@edu.

Office 365 for education will include everything available in Office 365 for enterprises – Exchange Online, SharePoint Online, Lync Online, Office Web Apps, and Office Professional Plus desktop software. The suite also will include templates and pricing designed to meet the unique needs of schools, their teachers and students. For more information on Office 365 for Education visit http://office365.microsoft.com/en-US/education.aspx

Cambridge University Press and Hunterstone showed an Azure based solution to assist search and provisioning of content within their Global Grid for Learning offering.

Two free Cloud based apps from Microsoft are also worth checking out:

——————————————

Schooling at the Speed of Thought

And finally, on a personal note, I’m most grateful to all those people who bought Schooling at the Speed of  Thought at the BETT show. Thanks to the growing international presence at BETT, the book, which I wrote in an independent capacity, will by now have reached at least 60 countries – from China to the Faroe Islands. THANKS!!!

Thanks also to my friends at elearningforce for selling the book off their stand 🙂