Goodbye CV?

CV_1685452c

 

To what extent does a CV reflect someone’s appropriateness for a job? How much does it cost recruiters to read and select candidates from piles of CVs? How much effort and cost goes into developing the optimal resume?

This year in China, 33,000 graduates applied for 70 places on the French cosmetics company L’Oreal’s graduate recruitment scheme. Rather than submitting their CV, they were asked to answer three simple questions via their smartphones. Then, a Shanghai-based startup called Seedlink used predictive language analytics to match right candidates with L’Oreal’s recruitment criteria. Seedlink’s RCXUE product asked open ended questions such as “”If you had one month and a £4,000 budget to tackle any project your heart desired, what would you do?” The software then analysed the language used in the answers, and compared each candidate’s response to draw up a shortlist.

Prior to using this approach L’Oreal filtered candidates by selecting only from China’s top universities. However, L’Oreal is joining a growing band of top firms who are questioning the value of high academic achievement.

Google, for example, recognise that good grades are useful, but not a good indicator of future performance. According to Laszlo Bock, ‘head of hiring’ at Google, quoted in the NYT – “For every job the No. 1 thing we look for is general cognitive ability ….  the ability to process on the fly and to pull together disparate bits of information… The second is leadership —  i.e. when faced with a problem do you, at the appropriate time, step in and lead… Another is humility and ownership… Research shows that many graduates from hotshot business schools plateau. “Successful bright people rarely experience failure, and so they don’t learn how to learn from that failure.”

The implications of the use of language analytics in assessment are immense. For example, ATC21s, the 21st Century Skills assessment project at Melbourne  used language analysis technology to analyse how well students were performing at collaborative tasks. As the technology and its implementation improves the idea of testing students in written examinations so they can pack their CVs with good grades is becoming rapidly dated.

 

 

Drop-out in Brazil Linked to Lack of Technology

Its been a long time since the last post – extreme workloads and travel has meant that the blog has taken a back seat. However, its back now – and this time with a much wider range of technologies and topics. In future articles I’ll be sharing my thoughts on how the surge in education technology innovation in developed countries is likely to impact on developing countries. More on that in later articles, but first a report from Brazil –

In a new report – ‘What Young People Think of Schools in Low Income Areas‘ young people complain that subjects don’t make sense, teachers are unprepared, and the curriculum does not include the use of technology.

More than 80% of the young people surveyed reported poor use of the internet to help them study – not surprising given than  less than 50% of the schools in the study had internet access. The biggest challenges are in High Schools where about 1.7 million young people between 15 and 17 years are abandoning schooling.

Angela Danemann, Director of Fundação Victor Civita explains “students will go away because they don’t see the sense in being there. Schools do not respond to their aspirations, and do not use the media with which they are familiar.” Students have to spend a lot of time copying from books.

The study also points to another problem: the lack of relevant content. Most students claim that only Portuguese and mathematics are relevant.

However, there are some schools in Brazil who are fully embracing technology, particularly in the private sector – for example Colegio Dante Alighieri caught media attention recently for their use of Scratch.

NAVENAVE in Rio is a bright, modern learning environment, deeply enriched with technology – but NAVE receives its funding through the CSR arm of a major Telco so it doesn’t represent a widely replicable solution for public schooling in Brazil.

Reforms to the entire way in which public schooling is done in Brazil needs to happen quickly. First steps should focus on the accelerated introduction of technology into schools so that children can at least get access to relevant content. Reforms to education management, import tariffs on equipment, teaching, physical spaces and funding are long overdue.

Loja

O Ensinio A Velocidade Do Pensamento, and the accompanying workshops with Planeta Educacao, were written specifically to enable transformation of Brazilian public schooling. For more information contact mike@eductechassociates.net

III Forum Microsoft Educacion, Madrid, May 17th

Thanks to all those who came to my workshop and keynote speech at the III Forum Microsoft Educacion, Madrid (#IIIForumEdu). This was a really well organised and well attended event – and thanks to my Microsoft colleagues, especially Juan Ramon Alegret Crespi; Maria Zamorano Alberruche; Irene Ocaña del Rey; Lola Chacon Gutierrez; and Fernando Bocigas Palma.

Here’s a link to the OneNote file complete with on-the-fly annotations:

Schooling at the Speed of Thought keynote

What can we learn from South Korea?

Of all the places I’ve visited, I’ve not seen technology so deeply embedded into daily life anywhere as much as in South Korea. Boasting technology giants such as Samsung and LG, South Korea places a conspicuous high value on technology in practically all aspects of life.

Korea’s remarkable technology driven growth has also been accompanied by improvements in social equity. How? Investment in human capital – as evidenced by their PISA results in recent years.

South Korea is well known for their results in the OECD PISA survey

Korea rides high in PISA (pic c/o Wikipedia)

Unlike Finland, whose high ranking in PISA can be attributed to excellent public schooling, Korea’s investment in human capital is significantly influenced by private investment. Parents with school-age children spend close to 25 percent of their income on education and all parents spend a large portion of their income on supplementary educational materials. Private education cost 3.95% of GDP in 2006. According to colleagues in South Korea, students acquire about 30 percent of their formal learning through their schooling, and the rest through supplementary measures.  

So what motivates parents to spend such large amounts of money on private tutoring outside the state schooling system? The main driver is that education is viewed as being crucial for success. At three or four years old, Korean children begin the long and strenuous race to higher education where Science and Engineering dominate.

Examination time is a very serious times of the year and the whole pattern of society changes. Businesses often start at 10AM to accommodate parents who have helped their children study late into the night and on the evenings before exams. The entire schooling system is geared to college entrance, so the curriculum of most schools is structured around the content of the entrance examination.

The Korean government spends generously on education (4.5% GDP in 1986); children spend a lot of days in school (220 days in Korea vs 180 days in the US); and school children work very long hours too. While these factors help with test scores, Korea is remarkably inefficient at a PISA criterion known as “study effectiveness”. South Korea ranks only 24th out of 30 developed nations in this measure. Top in study effectiveness is Finland, where time in school and hours spent studying is significantly less than Korea.

While many if not most other countries look on Korean performance on international tests like PISA with envy, in Korea itself there appears to be an intense pressure to do better, and in this highly technocratic country, its little surprise that technology is seen to be an important component.  

Technology Developments

Korea has been ‘computerizing’ schools for the last 15 years or so, and was the first country in the world to provide high-speed internet access to every primary, junior, and high school. ICT is also an increasing focus in the Korean Government’s education strategy, and in recognition of their progress, Korea won 1st prize from UNESCO for ICT in Education in 2007. So you’d be forgiven for thinking that this lead to Korea coming top in PISA Digital Literacy tests in June 2011 – however computer use is often restricted to teachers presenting information to students.

The real reason Korean students do so well in Digital Literacy is the intense use of technology after school – in Internet cafes, “cram schools” and the home where children can use the world’s fastest home Internet connections – on average 100 Mbps now, and with plans to increase this to 1 Gbps.

Several government initiatives have been set up to bridge the gap between the different levels of effectiveness of learning at home and at school. The overall goal of Government ICT initiatives is to ensure that by 2014 Korean school children will be competent with 21st century skills and are talented at innovating with future digital technology.

Much of the government’s initiative in ICT is channelled through KERIS – a Government Research Institute that acts as the country’s national ICT/education agency. KERIS’ Future Schools programme has conducted 39 research projects and 14 development projects focussed on new learning methods based on new technology. 

Infrastructure Development

The current priority from a budget standpoint is the acquisition of hardware and modernising class facilities. By 2010 there was a ratio of 5 students per PC – the intent of this investment was to support the development of creativity and problem-solving.

IT Expenditure Priorities

A second budget priority is to increase the number of classrooms that have been transformed to achieve “ubiquitous-learning” (u-learning).

Digital Textbook Project

KERIS has been piloting ‘digital textbooks’ in various forms in preparation for the move by 2015 to using digital textbooks in all schools in all subjects at all levels. The idea is that digital textbooks will be accessed/viewed on many different types of devices, from tablets to desktops to laptops to phones.

Cyber Home Learning System

In an attempt to reduce the cost of private education KERIS also developed content for the Cyber Home Learning System. Launched in 2004, CHLS is an online learning service supporting student’s self-directed learning. Click here to find out more – http://www.youtube.com/watch?v=CF8XdvA4ajk

Cyber Home Learning System

The next generation of the CHLS will include community, e-portfolio and analytical functions.

Next Generation of CHLS

EDUNET

KERIS set up and operates EDUNET, an educational information service which distributes a diverse range of high quality educational content. Content ranges from sound, photo, image, animation, module and video and is all specified by curriculum. As of October, 2010, the number of EDUNET users reached 6.17 million out of a school student population of 7.7m. To see a sample of the content, view a short video here. 

Education Broadcasting Services on the Internet (EBSi)

A service that has seen a sharp rise in growth recently is EBSi. This is where key education broadcasting service assets are made available for download. In 2010, daily usage of video-clips of lectures was 574,461, a 78% increase from the same period of the previous year.  

Teacher Training

Advances have been made too in teacher training. Not only are increasing numbers of teachers licenced to teach ICT, distance education training based on e-Learning has become the core method of teachers training. Distance learning is available to students too via “Air and Correspondence High School”.

NEIS (National Education Information Service)

The Korean Government is keen to develop the use of data systems in education. In a drive to reduce teacher workload, an administration system called NEIS (National Education Information Service) was developed. By streamlining procedures, many administrative processes can now be done in one-step. The system connects all stakeholders of the student, to allow them to get “to Know Our Children Better”. NEIS integrates student records across a range of fields including assessments, examination and health data.

The first task in creating NEIS was to develop the physical infrastructure. The aging facilities of the overall education management centre and 16 Metropolitan and municipal education offices were replaced. 3,800 servers with databases were installed in schools and integrated into a datacentre comprising 100 servers in upstream education offices.

To help teachers adapt, training is provided, and structured guides are available on the teacher area of Edunet.

 

(MPOE – Metropolitan and Provincial Offices of Education)

(MEST – Ministry of Education, Science and Technology)

After infrastructure, the next key ingredient was Business Process Reengineering and Information Strategy Planning (BPR/ISP) for constructing the business management system for the MPOEs. A transmission system for electronic funds transfer (EFT) system was created at the Korea Financial Telecommunications and Clearings Institute.

The School Information Disclosure System allows anyone including students and parents to easily receive information about schools. The system is designed to increases parents and the local community’s interest and participation in the schooling system. In addition, the government and the Offices of Education are expected to boost policy achievements by establishing even more efficient policies through situational reality analysis of school units using the School Information Disclosure System.

Where next?

Whilst Korea is developing one of the best IT infrastructures in the world, there are three key areas that need focus:

  • According to “Adapting Education to the Information Age”, Software Infrastructure in Korea is behind to developed countries and a change is required to develop capacity in this area.
  • A second area for development is lifelong learning. 28% of adults participated in the lifelong learning in 2009, which is lower than major advanced countries – eg EU average participation rate is 37.9%.
  • Perhaps the most important area of focus is 21st century skills. Korea has few programs in this area, and with Communication and Collaboration now part of the PISA 2012 framework, this area is in need of development.

To learn more:

Excellent blog article by Michael Trucano with links to in-depth resources: http://blogs.worldbank.org/edutech/e-learning-in-korea-in-2011-and-beyond

E-assessment – the high stakes strategy

E-assessment is becoming an increasingly hot topic, with an increasing number of governments around the world taking their first steps in this area. Whilst e-assessment has alway been an option in Learning Management Systems, formalised testing at national scale is a relatively new phenomenon. This article explores the opportunities, risks and architectures associated with delivering e-assessment at scale.

For the clarity, the term “e-assessment” is used here as the collective noun for electronic delivery of High Stakes and Low Stakes testing, diagnostics and examinations. The term also covers both summative and formative testing.

Norway – with over 800,000 school-age students – was the first country to implement national level e-assessment. As part of a national programme for improving education, and after successful trials in 2009 where students took examinations on their laptops, all the national tests for Reading, English and Math are now digital. A large part of Norway’s exams are also conducted digitally.

Log-on screen for students taking national e-assessments in Norway

Students enrol in the exam at least one week before they sit it. On the day of the exam they are given a user-name and password. The PCs that they take the assessments on are owned by the students but provided by the school, so there is a minimum specification for the hardware and browser (HTML 5). It’s acceptable for students to use materials that they have stored on their Hard Drive or a USB but not to gain help over the internet. Schools are 100% responsible for ensuring compliance with the rules, and E-assessments are monitored by a combination of teachers and software.

Arild Stangeland from The Directorate for Education and Training at the Norway Ministry of Education explains that the Norwegian system breaks down into the following components:

  • Administration of examinations, registration and results/reports
  • Electronic national tests and diagnostic tests
  • E-examinations
  • Collaboration Solution for preparing exams and tests
  • E-processes for preparation of materials for exams for the students

Each of these components have a separate technical architecture supported by a large stack of applications written in .NET, Java, and Flash, and maintained by the The Directorate for Education and Training. Several hundred servers are used, and BizTalk Server is at the centre of the architecture to co-ordinate traffic between different systems. A locally produced Learning Management System is used to deliver the assessments.

E-assessments in Georgia

Another country that has implemented a national level e-examination system is Georgia, in Eastern Europe. Microsoft’s Shota Murtskhvaladze reports that school graduation exams are now delivered through a “Computer Adaptive Testing” (CAT) system. Last year, 50,000 schoolchildren took the school-leaving exams in 8 subjects in 1520 public and private schools within an eight-day-long timeframe. The solution was developed by an agency of the MoE’s National Examinations Center.

There are a number or drivers behind the move towards e-examination:

  1. Cost – the English examination system cost ~ $1bn in 2009. Much of this is tied up in paper-based processes – printing, delivering, collecting and scanning papers.
  2. Flexibility – the potential for going beyond what students can physically write on a paper.
  3. Speed and accuracy – the time from sitting the assessment to getting an accurate the result in front of those who need to know is compressed with e-assessment.

Whilst the benefits of moving entirely to electronic assessment are clear, some countries are using technology to manage individual component parts.

The assessment division of British company RM Education handles a range of tasks for a large number of UK and international examination and assessment boards. They deliver authoring, delivery, marking and results services. For example, the company carries out on-screen marking of scanned paper scripts for the International Baccalaureate.

RM Assessement have a range of service offerings

Since 2009, RM Assessment has been working in partnership with Cambridge Assessment, the University’s international exams group, to enable e-assessment in more than 3,000 test venues across 18 countries.

In 2007, Romanian company SIVECO, worked with the Ministry of Education in Lebanon to develop an Examination Management System to manage and automate the examinations processes. Whilst the examination system remains paper based, the solution automates the examination administration tasks.

In Romania in 2011, SIVECO built a solution to publish the results of National High School exams. The solution produced 30 reports showing the results for 200,000 candidates and had to deal with high peak usage in a small time-frame – just 2 days.

To handle the peaks, SIVECO used Cloud technologies – Windows Azure in particular.  In this project the Romanian Ministry of Education gained ample processing power, eliminated downtime, and avoided spending $100,000 for a comparable on-premises infrastructure. Romania is far from alone in experiencing peaks in data generation and process – the whole assessment industry experiences significant peaks in demand and load during one or two months of the year, which makes Cloud technologies an ideal candidate for e-assessment solutions.

SIVECO used Azure to handle peak data loads

Cloud technologies are also being used to support e-assessment in Columbia. There, the Instituto Colombiano para la Evaluación de la Educación (ICFES) administers standardised tests to students and has used Cloud technologies to reduce costs and better manage online queries when scores are posted. ICFES moved to a Windows Azure platform in partnership with Asesoftware, and has cut costs by 80% and provided students a faster and more reliable solution.

Taking this a step further, the New South Wales Department of Education and Culture – the largest School District in the Southern Hemisphere – has moved to a complete cloud based e-assessment system for Year 9 Science Standards diagnostic testing (ESSA tests). Working in partnership with Australian company Janison, 65,000 students were tested last year in a comprehensive diagnostic assessment.

Part of New South Wales’s ESSA tests – c/o NSW DEC

Tests online revealed much more about how students were thinking, enabling the NSW DEC to provide high quality advice on how to improve teaching and learning. There were other benefits too – saving $200,000 on server infrastructure costs, saving printing and distribution costs, and gaining a week on marking time over previous years.

Risks

So if it’s that easy to do, why aren’t more countries doing it? The main barrier is risk. An assessment system failing during the critical period is headline news, as is inequity and inaccuracy. Many of these risks, however, are inherent in paper based systems too. There are plenty of examples of the wrong papers being delivered to schools, and papers getting lost on return to the examination centres. Like all mission critical IT systems, the key is to architect the system with risk mitigation as a top priority.

Architectures

A basic building-block view of an e-assessment system looks like this:

Key functions include:

A simplified Azure enabled workflow looks like this:

Using Azure as a key component in delivering e-assessment at scale. This is the kind of approach used by Janison for the NSW DEC ESSEA assessments.
  1. Exam/Assessment Board produces and signs-off assessment content collaboratively.
  2. Assessment content is pushed into the Cloud and distributed via a Content Delivery Network
  3. Assessment content is cached at school/exam center level after the first student has viewed a particular resource. As candidates enter the examination centre, they are given a username and password on a card.
  4. Just before the assessment starts, policies are enforced on the candidate’s client computer, and the assessment content is cached either in a dedicated application or on the browser. The candidate’s response data is cached locally and periodically sent to the Cloud via the school level cache.
  5. In the Cloud, the candidate’s data sits in a queue, and is then stored in flat tables.
  6. Encrypted data from the Cloud is sent to a data center for longer-term storage and processing and in relational databases. Once all the candidate’s response data is taken from the Cloud to the data warehouse, and the Cloud application is stopped.
  7. Markers grade the work and ensure leveling and normalisation.
  8. Results are collated, reported and analysed.
  9. Results are passed on to relevant agencies for recognition and certificate distribution.

Security and Equity

It’s crucial that candidates are all able to use devices of the same minimal specification, which makes a straight BYOD policy – where any device is acceptable – a difficult proposition.

Enforcing policies on the client computer is a key component. Until recently, attaining ‘lock-down’ would have required each computer to join a domain. Whilst having a Domain and Active Directory joined client computer has many advantages, there is another approach –  a solution developed by FullArmor called GPAnywhere. This allows “portable” policies to be created from Group Policy Objects and be applied to any end point including a Virtual Application. This means that any device running Windows can have an Assessment policy applied to them.

FullArmor’s GPAnywhere

What next?

Another approach to delivery being considered by some is VDI. The ability to be able to push a virtual assessment desktop to a device and lock it down is appealing as it is potentially a simpler approach. However, there are continuity of service risks with VDI which have yet to be fully tested.

assessment is in its infancy, but many leading examination and assessment authorities are looking carefully into what’s next in this space.

There are thee key areas where assessment has much greater potential than paper based assessment:
CAT

Computerised Adaptive Testing (CAT) is a form of computer-based test that adapts to the examinee’s ability level. Medical students at St George’s, University of London using CAT based e-assessment tools are asked to make decisions along a branched narrative in which information and choices available at a later stage depend on the choices the student made earlier.

ACARA – the Australian Curriculum and Assessment and Reporting Authority – takes this a step further and are talking about how to provide candidates with branched routes through the assessment so they get appropriate recognition for what they have learned. A student who struggles with a question or task can be routed along a less demanding pathway, whilst a more able or better prepared student can be routed along a more demanding pathway – both are able to get the best out of the assessment process. Test-takers also do not waste their time attempting items that are too hard or trivially easy.

Simulations

The New South Wales DEC were able to exploit interactivity when they ran their science tests online. Being able to use interactivity in an assessment opens up a wide range of testing options – for example, asking candidates to build or construct something, conduct virtual experiments, use haptics to test dexterity, or develop an animated scenario. None of these options are practical in a paper and pencil assessment.

21st Century Skills

Whilst we will see paper-based assessment for a long time yet, the pressure is on to find ways of assessing 21st Century skills such as creativity, problem solving, communication and collaboration. Problem Solving is now part of PISA 2012 framework Also, ATC21 – the 21st Century Skills assessment project – is doing some very interesting work in the area of collaborative assessment – www.youtube.com/atc21s One thing is certain – pencil and paper testing won’t help much in diagnosing and assessing whether students have acquired 21st Century Skills or not, so its reasonable to conclude that assessment has a big future.

Conclusion

E-assessment has come a long way in a very short time and is one of the last main barriers to the wider adoption of ICT in schooling. It’s clear that Cloud technology is changing the game here – not only enabling lower cost of service, but also opening the possibility of global e-assessment, with assessment and Examination Boards being able to offer their services to anyone on the planet. With the advent of better biometrics, and new ways of supervising assessments remotely perhaps the most exciting prospect is the notion of assessments being available at any point in one’s lifetime, not just at specified times in the calendar.

Practically everyone on the planet takes many examinations and assessment over their lifetime, so the prospects of this age-old process being made more fair, accurate, helpful, available and engaging are very exciting indeed.

Additional Information

New South Wales ESSA (Science diagnostics tests)
Norway
Changing faces of assessment

Azure

http://www.windowsazure.com

Thanks to:

Arild Stangeland, The Directorate for Education and Training, Norway Ministry of Education

Wayne Houlden, Aaron Wittman, Caroline Thompson and Niels Grootscholten, Janison, Australia

Eric Jamieson, Robert Cordaiy, Joanne Sim, Jim Sturgiss, and Penny Gill, from New South Wales DEC, Australia

Peter Adams, ACARA, Australia

Steve Harrington and Dave Patrick, RM Assessment

Alexandru Cosbuc and Florian Ciolacu, Siveco

Bob Chung, FullArmor

Horng Shya Chua and Puay San Ng, Microsoft Singapore; Bjørnar Hovemoen, Microsoft Norway; Shota Murtskhvaladze, Microsoft Georgia; Teo Milev and Ksenia Filippova, Microsoft Central and Eastern Europe; and Brad Tipp, Corporate HQ.

Invitation – Schooling Solutions Community

Thanks to the 80 people from 25 countries that took time out from the BETT Show to spend a morning with us at the Schooling Solutions Workshop.

As Roberta Bento from Planeta Educação said – “its amazing how so many of our problems and opportunties are the same”.

Key themes that emerged from the workshop included:

  • Deployment
  • ROI and effectiveness
  • Elearning and Content
  • ITL Research
  • HTML 5
  • Cloud (Live@edu; Azure; InTune)
  • Security

I’d like to thank Bruce Dixon, Sarah Armstrong, Edgar Ferrer Gil, Fotis Draganidis, Dan Baelum, Kirsten Panton, Walid Mohamed, Thomas Hauser and Dolores Puxbuamer for delivering the event.

2012 – The Year of Constructive Disruption?

This article is a personal perspective of the key Education Technology trends that we can expect to see in 2012. Whilst not expecting anything as apocalyptic as the Mesoamerican Long Count Calendar theory, my belief is that the world of education technology will see new and powerful disruptive forces in 2012. Whilst there are certainly very challenging times ahead for public sector institutions and the industry that serves them, innovation is accelerating too and new technologies and approaches will offer creative solutions for those who are prepared drive, or at least accept, change.

Mark Anderseen writing in the Wall Street Journal in August 2011 proposes that “Healthcare and education are next up for fundamental software-based transformation”. Education, Anderseen contends, has historically been highly resistant to entrepreneurial change, and is now primed for ‘tipping’ by new software-centric entrepreneurs”. This article explores the forces of technological change that are priming education for ‘tipping’, and what form that ‘tipping’ could take.

Forces of Disruption

As we start 2012 we enter uncharted economic, social and political territories. Frontier Strategy Group, a Washington based provider of market intelligence, predicts that advanced economies will “muddle through the next 18 months with low growth but avoid a major recession”. Gartner, on the other hand, predicts that by 2014, “major national defaults in Europe will lead to the collapse of more than a third of European banks” – which will have significant consequence worldwide.

Gartner also predict that the control of technology is “shifting out of the hands of IT organisations… Cloud, social, mobile and information management technologies are all evolving at a pace”.

Developing markets are exerting an increasingly powerful influence too. According to Frontier, in the next 4 years, Latin America will consume more PCs than in the previous 30 years combined (276 million units). So much for the so called “post PC era”. At the same time we’re seeing the Asia/Pacific region emerge as one of world’s largest markets for devices, with an expected total market sales of more than 6.3 million tablets in 2011.

End-user expectations are rapidly changing too – “end users expect to get access to personal, work, applications and data from any device, anytime and anywhere”. Users and institutions are also demanding ever better power conservation too. The concept of “Big Data” is starting to “alter the relationship of technology to information consumption, as data coming from multiple federated sources in structured and unstructured forms must now be analysed using new methodologies”.

So what does all this mean for education technology? The first thing to consider is the fact that ICT expenditure in education in 2012 is coming off a comparatively weak platform. For at least 20 years now, IT has systematically been introduced into schooling but whilst the value of IT in education is clear, what is also clear is that education has the lowest levels of IT spending amongst any type of major enterprise – IT Spending by Industry Vertical Market, Worldwide. So are we likely to see a boost in the purchase and adoption of IT in schooling worldwide in 2012? The answer to this will depend a lot on spending on education ICT by governments.

Government Spending

According to Gartner, the current decision-making environment is dominated by demands to cut costs while improving operational efficiency and effectiveness. “Government organizations will continue to adopt technology innovation, but mostly in areas where technology is inexpensive” or “support more radical approaches to cost containment”. “By 2013, government financial sustainability will join cost containment as the top driver and constraint for government IT spending”. This isn’t a short-term trend either – “the continuing pressure to cut government budgets is likely to influence spending priorities for the next decade or more”.

Those of us wishing for a tipping point where schooling gets transformed at scale may be in for a wait. For many governments in 2012, “the key challenge will no longer be to transform, but to fulfil their statutory obligations”.

IT investments that enable transformational change “will be limited, especially by the politics of establishing budget priorities and the difficulties of institutional change”. However, these challenges and opportunities won’t be evenly spread, so let’s now look at how these forces are playing out in different parts of the world.

BRICs

Brazil – Microsoft’s Emilio Munaro says “there are more than 198,000 schools in Brazil and 98% of them now have computer labs”. “Tablet usage is growing fast, in many cases accelerated by popular touch enabled apps, but also long battery life which suits environments where electricity outlets are in short supply. However, broadband connection will remain as the challenge for Brazil in the next 3-4 years”.

Russia’s 2012-2014 budgets emphasise long-term development goals and the further introduction of ICT in schools. Expect to hear more about a significant new School of the Future project in the Moscow Region initiated by the Skolkovo Foundation.

The importance of using ICT for improving education in India has been emphasized in the policy framework for over a decade, and 2011 saw a number of large-scale device-lead initiatives. India is home to both one of the biggest IT workforces in the world, but also has incredible diversity in wealth and geography and this has lead to a wide range of solutions for both formal and informal learning. There’s every expectation that use of ICT in education will continue to grow and more innovations will emerge from India in 2012.

Meanwhile in China, mass school computerisation efforts are under way in rural Western China. “It is clear that Chinese support for the purchase of ICT infrastructure for schools will most likely increase greatly in the coming years” according to Michael Trucano from the World Bank.

Europe

The recent down-grading of credit ratings of some major European economies will mean that government borrowing in those countries will be more expensive, giving less room to manoeuvre on public spending. Whilst innovation and investment in ICT in schooling remains strong in many European countries, public sector austerity measures will inevitably cause disruption. However, one mitigating factor is that unemployment and the cost of school dropout is at the top of the agenda for many European countries, so investment in Education ICT may also be seen as a way to boost economic growth.

According to Mark East, General Manager for Microsoft’s Education Group “One thing is for sure; human capital is a nation’s greatest asset and Education will remain a priority investment area for most Governments”.

Asia

South Korea – already top of PISA and digital literacy skills tables – is surging ahead with a $2.4bn Education technology plan, now in its third phase of deployment. Many middle school and high school students now download and complete e-learning classes via their portable multimedia players as a matter of routine.

In Singapore, the government is driving technology lead innovation, and recently announced plans to digitise testing and examination systems.

USA

There’s a sense of big appetite for change in the USA, driven by a collapse in adequate levels of funding for schooling and the rapid growth in virtual schooling and online learning resources. The Department of Education is executing against a strong National Education Technology Plan and the USA is a hotbed of innovation in the education consumer space.

Teacher Shortages

The world urgently needs to recruit more than 8 million extra teachers, according to UN estimates. A worldwide shortage of primary school teachers threatens to undermine global efforts to ensure universal access to primary education by 2015.

According to the Guardian newspaper, at least 2m new teaching positions will need to be created by 2015, and an additional 6.2 million teachers will need to be recruited to maintain the current workforce.

This means that the 55m practicing teachers worldwide have increasing demands on their time as countries compete to raise education standards and develop the skills required for economic growth, at a time when the profession is short of the optimal workforce by 15%. As pointed out by Professor Sugata Mitra recently, “quality teachers simply don’t exist where they’re needed most”. “Talented teachers tend to be drawn away from relatively poor areas due to offers of better jobs or higher incomes. For these reasons, “we need new methods of learning”.

Whilst it’s clear that ICT can help governments achieve their education aims, the increased demand for teachers with ICT skills is clearly outpacing supply.

Consumerisation

Rapidly increasing availability of access to online learning sources, coupled with social networking is opening up a spectrum of low cost learning opportunities for students both inside and outside the classroom. MIT Open Courseware, Kahn Academy, University of the People, BBC Bitesize, Mymaths, Tutorhunt etc. all offer a supplement to teacher-lead “instruction”. Sugata Mitra’s “Hole in the Wall” project goes even further, offering learning where there simply are no teachers.

According to sources quoted by Larry Cuban of Stanford University, the worldwide market for self-paced eLearning products and services reached $32.1 billion in 2010 (about 50% of what formal education currently spends on ICT). The five-year compound annual growth rate (CAGR) is 9.2% and revenues will grow to $49.9 billion by 2015.

Clayton Christiansen, in his book “Disrupting Class” predicted that virtual schooling will force massive changes to formal schooling systems. By 2008, online enrolments for virtual schooling in the US had risen from 45,000 in 2000 to over 1 million, and there are no signs that this is slowing down.

A key component in consumerisation is social networking, and we’re seeing a lot of innovation in this space. For example, Microsoft’ recently announced So.cl which integrates search into the social learning experience.

Shifting Power

More Learning Please

Rising youth unemployment in Europe and the Middle East, globalisation and growth in developing countries are all fuelling the need for more knowledge, skills and competencies.

“People leaving our schooling systems, more now than ever, will need to be able to respond positively to the opportunities and challenges of the rapidly changing world in which we live and work. In particular, they need to be prepared to engage with environmental, economic, social and cultural change, including dealing with the effects of global warming and the continued globalisation of the economy and society, with new work and leisure patterns and with the rapid expansion of communication technologies.” (UK Qualifications and Curriculum Authority).

In the same way that there is limited funding available from the public purse, there is also limited time in the school day into which to squeeze the curriculum. Again, the implications are clear – more effective learning has to be implemented.

Mind the Engagement Gap

Commercial websites are increasingly become social sites, leaving a shortage of people to deal with social engagement on the scale required. The same pattern is happening in schooling where the teaching workforce does not have the capacity to deal with the explosion in the demands for skills and competencies, and the increasingly availability of online learning. As students’ technology capacity grows relative to that of teachers, an engagement gap between students and teacher is set to widen.

The answer to the engagement gap in commerce is the increasing use of “bots” and many sites now have fully or semi-automated live chat. In 2010, the average user of Facebook has 120 to 150 friends. Some of these “friends” are not real people, and many users find this to be quite natural. Gartner predicts that by 2015, 10% of your online “friends” will be nonhuman. It’s a reasonable bet that some of these online friends will be virtual tutors.

What will the answer to the engagement gap in schooling look like? Professor Sugata Mitra explores the theory that, given unrestricted and unsupervised access to the Internet, groups of children can learn almost anything on their own. Few – myself included – would advocate this as a universal approach to schooling, but it’s clear that technology enhanced independent and social learning offers answers to both the lack of teachers and the need for more effective learning.

Irresistible Forces Meet the Immovable Object

So the forces of consumerisation, increased learning requirements, and the demand for relevant ways to engage are beginning to weigh heavily on institutionalized learning.

According to Gartner, “the homogeneous learning and technology environment of the last century is fading fast. Moreover, the ivory tower mentality of education agencies is disappearing to reflect changing needs and values”.

These irresistible forces, however, will continue to meet an immovable object – schools. Whilst the nature of schooling will surely change, children will still be going to places called schools run by teachers well into the foreseeable future. Schools have responsibilities beyond academic learning. Parents and voters want schools to socialize students into community values, prepare them for civic responsibilities, and get them ready for college and career. Technology enhanced independent learning alone cannot meet those demands.

Big challenges for 2012

So the 2012 landscape will be dominated the necessity to provide more learning at less cost, against a backdrop of human capacity shortages and students faced with greater consumer choices.

Schooling IT leaders must balance the demands of supporting today’s environment, addressing the demands of the education stakeholder community, and preparing for a technology-driven transformation of the education ecosystem.

So what, then, are the big education technology challenges for 2012?  Its my belief that there are three big problems to crack, and that in 2012 market forces will drive progress in each of these areas.

1. ROI

2. Personalising Learning

3. National Education Networks

ROI

I start with ROI because in times of squeezed budgets it’s essential that both institutions and suppliers are able to identify which budget lines have the greatest and least impact on the learning “bottom line”, and identify where investments will have the most positive effect. At the very least, I’d expect it to at least become more acceptable to talk about ROI for investments in education technology. As discussed in detail in this blog – Lets Talk About Money – the idea of at least attributing “cost per unit learned” to investments should have become standard practice by now.

Personalised learning

For at least 10 years, the goal of personalized learning has been talked about, pursued as a strategy, dropped when found too hard to execute, and then talked about again. So, could 2012 be the year when personalizing learning at scale begins to take off?

I’m optimistic that we’ll see some progress in this space this year, because Personalising Learning can address so many of the problems that schooling currently faces. When we also add the learnings that we now have from games-based-learning, neuroscience and Artificial Intelligence (see Artificial Intelligence in Schooling Sytems) we seem to have all the technical building blocks in place. Personalised Learning also fits the trend towards consumerisation really well.

Think of Personalised Learning from a student’s perspective as “My Learning My Way”. To get to My Learning My Way, there are several key elements:

My technology my way

As discussed in detail in the BYOD/C article, the emergence of low cost technological supplements and alternatives to institutional “instruction” is growing at an increasing pace. Yes, the state will always have a role in providing a “base level” of appropriate technologies for learners, but the reality is that students across the world are “doing it for themselves”, learning on their own devices using software and learning services of their own choice.

The biggest challenges in this area are to ensure equality of access to opportunties, and stopping the adoption of “lowest common denominator” technologies, learning applications, services and devices.

My pathway my way

Learning can be said to be ‘personalised’ when students have a unique set of pathways through their learning. Clearly, at early stages younger learners need a lot of adult support with learning decisions, but as learners progress through their schooling they need to become more independent – and that independence can be supported with technology. Personalised Learning is a characteristic of the Transformed Phase of schooling and discussed in the “Transformed Phase” of this blog.

For personal learning pathways to work well, three key problems need to be addressed:

Firstly, assessments – both high and low stake – need to be ported into the electronic domain. Increasingly we’re seeing this happen. In Norway, for example, national tests at level 5, 7 and 9 ++ and exams in upper secondary and now administrated electronically.

Secondly, data from assessment and ongoing learning tasks needs to be used to make effective decisions about what learning tasks need to be undertaken, and when. The resulting learning pathways need to be challenging but achievable and “in tune” with how individual students learn.

Thirdly, the difficult problem of Dynamic Timetabling needs to be solved. This is where the time students spend in formal schooling is determined not by a pre-determined matrix of subjects and timeslots allocated according to age and classes, but by a system that matches their precise learning requirments against the resources needed to meet these. The problem can, to a point, be addressed through CRM, but it will take an evolution in schooling management techniques as well as technology developments to solve this problem.

My content my way

The model of purchasing standard textbooks for all students must surely come under more intense questioning in 2012. Companies such as Triba Learning from Finland are offering fascinating glimpses of new models where data and algorithms are used to generate value. Triba uses data to segment students into increasingly granular groups that exhibit similar learning dispositions. Powerful algorithms are used to analyse how they best learn and select appropriate content. School districts save money through using this system to purchase only the content that best fits the learner’s requirements – as opposed to having to buy large sets of books which may only ever be partially used.

Content itself needs to change radically too. “Our high school kids are fantastic teachers,” said Professor Harry Kroto, talking at NEST 2011 about the GEOSET project, in which students record lectures that can be freely accessed online. Creating content leads to more learning than merely consuming content, so “atomising” content into building blocks that can be reassembled into customised materials by students and teachers is a clear way forward.

Whilst content and learning sofware has evolved to accommodate visual, auditory and kinesthetic learning styles, the next frontier is the use of neuroscience to make learning more engaging. We are learning more about the science of learning, and how to drive the motivation to learn. Emerging game-like learning software makes use of the individual’s natural reward system which helps them to learn which action has the most valuable outcome. Software can be designed to emulate a teacher who constantly adapts to current learner understanding. Thus software can enable far more effective learning than is often possible through one-to-one teaching.

My data my way

The standard way of looking at student related data is that it should be “owned” by the institution. But to get to truly personalised learning there needs to be a paradigm shift – one that is prepared to accept that the ownership of the data resides with the student, and their parent or gaurdians.

A similar idea sits behind Microsoft’s “Health Vault”. This CRM based solution enables individuals to store their own health records in the Cloud and then grant access to these records to trusted people – doctors/relatives etc. Health Vault has evolved into a platfrom with an online marketplace for applications and even USB devices that can be used to monitor and manage health issues. This idea isn’t new in education though – e-portfolios have long been based on similar principles.

For school students, it would be essential to integrate personally held data with the data held in formal schooling institutions. According to Stephen Coller from the Gates Foundation, its not possible to build large scale data driven solutions without going through formal schooling data systems and subsystems. For example, to integrate with class rosters, enrollment systems have to be accessed. According to Coller, there needs to be:

  • A unifying middle layer that eliminates the need for solution providers to integrate with each school’s systems

or

  • a trust framework and ‘digital locker’ that gives users control over their own data and records

and

  • A badging or certificate framework that spans formal and informal learning

When thinking about large scale data systems, the question is whether exisiting data is sufficiently rich or accessible enouhg to justify the huge efforts required to get more than a basic dataset shared between the stundent and the institution, or whether it would be easier to rearchitect the entire system from scratch based on the new paradigm.

Either way, a core problem which needs to be solved in this area is “Micro Federation” – ie the concept that a student with their own “digital locker” can grant and control access to that data to trusted 3rd parties. The benefit to the institution is access to data to help decision making at micro and macro levels. The benefit to the student is having their learning supported in ways that may have been difficult to achieve otherwise. To achieve Micro Federation, there are some key areas that need to be addressed including:

• Privacy

• Security

  • Authorization
  • IDs and authentication
  • Encryption

• Transaction models

• Interaction models

• Interconnection technology

• Interfaces

National Education Networks

Greater personalization requires improved interoperability between data, content, assessments and applications. But to scale personalised learning, we need to be able to solve big problems in the areas of data management; decision automation; individualised learning pathways; and content. To do all this requires National Education Networks (NEN). The purpose of an NEN is to:

  • Improve data flows for the benefit of students, within and between end-users and schooling institutions, regionally and nationally.
  • Provide a stable platform for learning and innovation based on interoperable systems
  • Reduce the technical burden on schools, allowing them to focus on the use of technology in teaching and learning rather than its management

Few countries have built NENs, but the UK is one country that has. In 2004, the BECTA – the British governments ICT agency – produced detailed plans for a national level network infrastructure for schools. This became the National Education Network – http://www.nen.gov.uk/

So what are the key problems that need to be solved in building a National Education Network? Firstly, a National Education Network should have three architectural layers:

  • Services
  • Interfaces
  • Infrastructure

Services

The services layer should define the outcomes required from the NEN. Key questions that need to be addressed are:

  • What services do we want the NEN to deliver?
  • To whom and when?
  • At what costs and return on investment?

This leads to functional decisions about three key elements – interfaces that expose the functions of one system to other systems; what operations are performed within a service function; what messages are inputted and outputted from service operations.

A well-designed NEN should provide a services platform on four levels:

  • Connectivity services linking all elements of the model together, safely and securely connecting end-user stakeholders to the internet and wider educational community
  • A marketplace for institutions and individual students to purchase and consume learning services including content; personalised learning management systems; and management information system
  • Data services including data warehousing, management information systems (MIS) and a range of data mining tools
  • An R&D “sandbox” using anonamised data about learning to enable software entrepreneurs to build ever more effective personalised learning solutions

Interfaces

An interface is a shared boundary across which information is passed. In an ideal NEN students own the data, and share selective parts of it with schooling systems, Local Education Authorities/Municipality/State, the Ministry of Education, parents/guardians and ultimately prospective Higher/Further Education institutions or even employers. Different stakeholders would need different information – the Ministry of Education, for example, would need much less information than the school.

For data to move effectively across the system, trust relationships need to exist between these boundaries. In a NEN, interfaces can be specified to manage the flow of data; monitor status; manage assets; and even control devices.

Defining interfaces trust relationships, and data exchange methods across a large population may be complex, but it offers huge potential in terms of increased effectiveness and cost savings.

Infrastructure

The Physical Network component of an NEN has multiple layers and requires at least the following to be designed:

  • Infrastructure
    • Access models – radio and television, digital devices, computing
    • Topology, IP addressing, naming
    • Plumbing, traffic routing
    • Storage
    • Network control
    • Security
  • Establishing Physical Security
    • Creating a secure physical boundary for critical communications equipment
    • Protecting the Network Elements
      • Securing routers, switches, appliances, VoIP gateways and network devices define network boundaries and act as interfaces to all networks
      • Designing the IP Network…
        • … based on sound IP network design principles
  • Directories and Control
    • User directories
    • Asset catalogues
    • Identity management
    • User management

A comprehensive design blueprint for a National Education Network is the BECTA specification for the UK’s NEN.

NENs for Personalised Learning

The ultimate goal for a NEN is to enable personalised learning at scale and cost-effectively. For that to happen several “moving parts” need to synchronise. At the start of the cycle, data about learning is used to present students with appropriate learning opportunities through tailored content. Students progress through these tasks through individual pathways. As they do, they generate data and different aspects of that data are used by different stakeholders for different reasons. The data is managed and communicated via the National Grid for Learning, and the marketplace platform within the NEN acquires appropriate content for the learner’s on-going learning process, starting the cycle over again.

Standards

Take a NEN with interfaces across the 5 boundaries described above. If each boundary handles 10 different types of data, then roughly speaking there are 105 (100,000) “sub-interfaces” that have to successfully connect to make the system function properly. The complexity increases dramatically when you add complexities such as data formats and exchange methods.

To reduce complexity in NENs, standards are a key consideration. I say a “consideration” rather than “the answer” because there are two different perspectives to take into account.

From a vendor point of view, standards can get in the way and increase costs. Typically, solution developers will build large scale Schooling Enterprise Architectures up to LEA or even state level, but rarely at national level. At these levels vendors generally find it easier to not have to conform to standards as this gives them freedom to design information systems to their own specifications and re-use IP and technologies from other similar projects.

From a NEN commissioning body (e.g. Ministry of Education) perspective, standards that are open and not driven by vendors are a key way to reduce their overall costs and complexity. For example, a NEN will require the integration of separate datacentres at municipality/LEA/State levels. Without standards, proprietary interfaces must be reworked for each new system added. It is simply easier if everyone does it the same way; so each datacentre should require just one standard interface which:

  • Standardizes the dialogs, messages, and data elements
  • Standardizes user interfaces to the system
  • Allows a single external interface with different agencies, enabling cooperation and coordination between them

Standards need to deliver value at both macro and micro levels. Standards that are developed at the national level may include information that local systems will not use. On the other hand, standards may need to be supplemented with additional information to meet local needs.

A noteworthy national level IT infrastructure for public services is the National Transportation Communications (NTCIP) system in the US and there is much that is transferable from NTCIP to the design of NENs. NTCIP is a set of standards for interoperability between computers and electronic traffic control equipment that covers the US and is now being adapted for implementation in other countries. A key to the success of this is system is how standards are integrated into the model. For example, for a system to be a part of the NTCIP “Management Information Base”, a set of mandatory objects are required, but to enable local adaptation, specified optional objects are permitted. To minimise cost, risk and complexity, the NTCIP Management Information Base is public, not proprietary.

Education has a long way to go to catch up with how NTCIP uses standards.

Key challenges in building NENs

There are many major challenges to building NENs including:

  • Selecting and building an appropriate framework of international standards and prescriptive methodologies, and ensuring public ownership of the overall model
  • Data aggregation and interoperability
  • Reconceptualising NENs to put the student at the centre

National Education Networks are certainly complex, but with the methods and standards now available, and the overall gains that they can bring there is every reason to expect to see an increasing number of national level education network projects in and beyond 2012.

Technology Trends in 2012

IT organizations must balance security against access, and meet the growing expectations of individuals who are more technology-savvy than ever before. As consumerisation grows and budgets get cut, IT leaders in education are becoming increasingly open to leveraging personally owned devices and external Web 2.0 services as well as to delivering information and services beyond their physical campuses.

This is shaping what IT and digital services will increase in significance in 2012, as summarised in the table below:

Enterprise computing Consumer computing
Wireless aaS Social-Learning Platform for Education
Federated Identity Management Windows-Based Tablet PCs
SIS International Data Interoperability Standards E-Textbook
Hosted Virtual Desktops Social Media in Education
Cloud Email for Staff and Faculty E-Portfolios
Unified Communications and Collaboration Mashups
CRM Lecture Capture and Retrieval Tools
BYOC strategies Media Tablets

At the NEST conference in Hong Kong, Facebook Co-founder Chris Hughes pronounced that “the textbook is dead”. “In the next five to seven years, the textbook is no longer going to be the basic building block of education.”

The challenge for education institutions in 2012 is to treat the pending changes as an opportunity and navigate into the future, making sound decisions that focus on learner achievement, and develop strategies and adapt organizational structures that embrace a world of choice.

The challenge to the education technology industry in 2012 is to ramp-up proofs of concepts that demonstrate how technology can viably personalise learning on a large scale.

A Chinese proverb says, “May you live in interesting times”. In the world of education technology, 2012 should prove to be a very interesting year indeed.

Happy New Year!

Schooling Solutions Workshop, London, January 12, 2012

If you are in London on the 12th January for BETT, come and join us at our  Schooling Solutions Workshop.

Key questions that the workshop will address include:

  • How can standards be raised whilst reducing costs?
  • How can you take advantage of trends such as personalization, BYOD, Cloud and virtualization?
  • What approaches can you take to simplify and improve ICT services?

This workshop will bring you up to speed with the latest worldwide trends in education technology and give you practical methods and approaches that you can use immediately. It will be a mix of formal presentation and round-table discussion with world-class experts and leaders in their fields.

Designed to help decision makers plan more effective, efficient and inspiring systems, the workshop will provide an understanding of the Microsoft technology roadmap, solutions for access, connected communities and analytics, and offer the opportunity to work in groups with experts.

Agenda

Time Session
09.00 Solutions for Schooling
10.00 E-Learning
10.30 Institutional Effectiveness and Efficiency
Round-table – project planning sessions
11.00 Access
Managing large scale access programs
Learning
Using ICT to increase learning outcomes
OperationsUsing data to improve decision making
12.30 Reflection & Networking Lunch
  • Date: Thursday, 12th January, 2012
  • Time: 09:00 – 13:00 followed by lunch
  • Location: Microsoft Offices, Cardinal Place, 100 Victoria Street, London, SW1E 5JL

Confirmed speakers/facilitators include Mike Lloyd, Sarah Armstrong, Matthew Fox, Edgar Ferrer Gil, Fotis Draganidis, and Thomas Hauser .

To book your place, contact your local Microsoft Education representative, message me on Facebook, or drop me an email

Austria – e-Learning and Innovation Conferences

Thanks to my colleagues in Austria for inviting me to give the keynotes at the “Elearning Conference” in Eisenstadt and the “Microsoft Innovation & Education Conference 2011” in Vienna.

In all, around 350 senior Ministry of Education, Local Authority and teachers attended these events to learn about effectiveness, collaborative learning and the “new world of work”.

My presentation covered the following topics:

  • How can ICT accelerate the learning process?
  • How can ICT be used to drive operational efficiency?
  • How can ICT help drive transformation?

The slides can be downloaded here – Schooling at the Speed of Thought Austria, November 2011

Each of the participants at the Vienna event got a copy of “Schooling at the Speed of Thought“.

Thanks to Yuri Goldfuß; Andreas Exner; Daniela Denk; Mirjam Blechner; Thomas Hauser; Ulrike Lanner; Sven Reinhardt; and Dolores Puxbaumer for an excellent reception and well organised agenda.

Putting the “i” into Singapore Schooling

With top rankings in PISA and TIMMS, Singapore is the envy of many schooling systems around the world. Whilst ICT is just one of a range of factors that affect learning outcomes, it is a key tool for meeting at least two of the four key desired outcomes of the Singapore schooling system – for all students to become self-directed and collaborative learners.

Singapore was one of the first countries in the world to have a national strategy for ICT in Schools. A succession of well-planned, funded and executed programmes focussing initially on infrastructure and training, and more recently focussing on self-directed learning – has driven effective use of ICT. For details of Singapore’s main ICT projects, see http://wp.me/P16Iyp-46

A great showcase for the effectiveness of this investment is Crescent Girls’ School, a member of the “Future School” programme, and recently awarded the status of Mentor School by Microsoft. Crescent also hosted the CRADLE conference on 1st – 3rd August.

On the surface, Crescent could be any other Secondary School, but a quick glance at the trophy cabinet next to the reception makes it clear that this school is totally committed to high performance. Crescent’s aim is to be at the forefront of harnessing technology to enhance learning outcomes. ICT is used extensively in both delivery and assessment and the school’s 1300 students each have their own Tablet PC. The goal of using ICT is to give students a degree of choice over what they learn and how they learn.

The students engage in a wide range of activities including 2D, 3D animation and robotics; multimedia production; photo-shooting and editing; and development and use of e-books. Particularly impressive is the use of Tablet PCs’ “inking” features for a range of activities including highly impressive manga artwork.

Crescent is moving towards project based learning with a series of “Integrated Secondary Curricula” programmes.

Virtual Reality is used at the school too. For example, in Geography, students experience immersive content showing erosion in a river – a concept that is much easier to grasp when viewing 3d animated rocks being swept along by the current from the perspective of the river bed.

Particularly impressive at Crescent is the way that teachers engage in the content creation process. For example, a complete suite of applications and content have been developed for the Tablet PC that not only exploits the pen and inking technologies but also address a range of different learning styles.

Taking this process further, teachers specified collaborative games to take advantage of the MultiTouch features in Windows 7 and HueLabs’ “Heumi” multitouch (Surface) devices. This means that students can now engage in a wide range of collaborative learning experiences, such as learning to write Chinese. As impressive as the technology itself is the way in which the room in which the Heumi devices are deployed. Here, in the “iCove”, strong colour coding of the devices and the seating, enable teachers to group learners according to their learning objectives.

More recently the school has introduced a biometric system that not only automatically records the students as present but takes their temperatures as they come into the school in the morning, enabling their health to be monitored.

The infrastructure that sits behind Crescent’s ICT provision is highly impressive. The infrastructure foundation is a Campus-wide wireless network with 100 Mbps Broadband. Tablet PCs are stored in steel lockers, and batteries are charged at charging stations.

Approximately 30 on-premises servers perform a range of essential back-end functions from authentication to content management. The Server infrastructure – based on a Microsoft platform – supports a rich tapestry of capabilities including:

  • i-Connect Learning Space – a role based portal for organising student’s learning and activities
  • Pearson’s Write to Learn – a system that helps “automate” the marking of essays
  • HeuX – Huelabs Classroom Management System – with lesson management, digital book library, real-time Communication and Collaboration include notes-sharing and social media; screen monitoring and broadcasting; Presence awareness; attendance; Video Conferencing
  • i-Media – content management system.
  • Interactive books

These solutions are supported by Windows Server; SQL Server; Microsoft SharePoint Portal Server; System Center; Live Communications Manager; Hyper-V and Live@Edu. Much of the learning that takes place at Crescent happens after school hours, and the Virtual Private Network enables students to have 24×7 access. It’s not uncommon to see the portal being used by students at home at 2.00AM.

Singapore schools benefit from very high quality teachers (only 10% of applicants get admitted into teacher training). This is reflected in the staff at Crescent. Principal, Mrs Eugenia Lim, supported by Chief Technology Architect for Learning, Mr Lee Boon Keng, have a highly structured and team orientated approach, underpinned by a strong focus on continuous professional development.

Every hour, the chimes of Big Ben ring across the school signifying a change of lesson. As with Cornwallis School in Kent in the UK, I was totally inspired by what I saw at Crescent but couldn’t help wondering whether a shift from time-based to a performance-based model would better fit such a technology rich approach to learning. Nonetheless, Crescent’s use of ICT is without doubt world leading.

Whilst Crescent Girls’ School is clearly a leader amongst leaders, it’s far from unique in Singapore in the way in which it innovates with technology. Singapore schools benefit from long term, consistent policy and investment in ICT in schooling. With their structured approaches, strong management and deep understanding of how ICT can make learning more effective, Singapore schools look set to continue to show the world how it’s done.

Fortunately for us all, Crescent Girls’ School are “giving back” by encouraging people to visit the school – both physically and virtually.

Thanks to Eugenia Lim, Lee Boon Keng and all the staff and students at Crescent Girl’s School.