III Forum Microsoft Educacion, Madrid, May 17th

Thanks to all those who came to my workshop and keynote speech at the III Forum Microsoft Educacion, Madrid (#IIIForumEdu). This was a really well organised and well attended event – and thanks to my Microsoft colleagues, especially Juan Ramon Alegret Crespi; Maria Zamorano Alberruche; Irene Ocaña del Rey; Lola Chacon Gutierrez; and Fernando Bocigas Palma.

Here’s a link to the OneNote file complete with on-the-fly annotations:

Schooling at the Speed of Thought keynote

Invitation – Schooling Solutions Community

Thanks to the 80 people from 25 countries that took time out from the BETT Show to spend a morning with us at the Schooling Solutions Workshop.

As Roberta Bento from Planeta Educação said – “its amazing how so many of our problems and opportunties are the same”.

Key themes that emerged from the workshop included:

  • Deployment
  • ROI and effectiveness
  • Elearning and Content
  • ITL Research
  • HTML 5
  • Cloud (Live@edu; Azure; InTune)
  • Security

I’d like to thank Bruce Dixon, Sarah Armstrong, Edgar Ferrer Gil, Fotis Draganidis, Dan Baelum, Kirsten Panton, Walid Mohamed, Thomas Hauser and Dolores Puxbuamer for delivering the event.

2012 – The Year of Constructive Disruption?

This article is a personal perspective of the key Education Technology trends that we can expect to see in 2012. Whilst not expecting anything as apocalyptic as the Mesoamerican Long Count Calendar theory, my belief is that the world of education technology will see new and powerful disruptive forces in 2012. Whilst there are certainly very challenging times ahead for public sector institutions and the industry that serves them, innovation is accelerating too and new technologies and approaches will offer creative solutions for those who are prepared drive, or at least accept, change.

Mark Anderseen writing in the Wall Street Journal in August 2011 proposes that “Healthcare and education are next up for fundamental software-based transformation”. Education, Anderseen contends, has historically been highly resistant to entrepreneurial change, and is now primed for ‘tipping’ by new software-centric entrepreneurs”. This article explores the forces of technological change that are priming education for ‘tipping’, and what form that ‘tipping’ could take.

Forces of Disruption

As we start 2012 we enter uncharted economic, social and political territories. Frontier Strategy Group, a Washington based provider of market intelligence, predicts that advanced economies will “muddle through the next 18 months with low growth but avoid a major recession”. Gartner, on the other hand, predicts that by 2014, “major national defaults in Europe will lead to the collapse of more than a third of European banks” – which will have significant consequence worldwide.

Gartner also predict that the control of technology is “shifting out of the hands of IT organisations… Cloud, social, mobile and information management technologies are all evolving at a pace”.

Developing markets are exerting an increasingly powerful influence too. According to Frontier, in the next 4 years, Latin America will consume more PCs than in the previous 30 years combined (276 million units). So much for the so called “post PC era”. At the same time we’re seeing the Asia/Pacific region emerge as one of world’s largest markets for devices, with an expected total market sales of more than 6.3 million tablets in 2011.

End-user expectations are rapidly changing too – “end users expect to get access to personal, work, applications and data from any device, anytime and anywhere”. Users and institutions are also demanding ever better power conservation too. The concept of “Big Data” is starting to “alter the relationship of technology to information consumption, as data coming from multiple federated sources in structured and unstructured forms must now be analysed using new methodologies”.

So what does all this mean for education technology? The first thing to consider is the fact that ICT expenditure in education in 2012 is coming off a comparatively weak platform. For at least 20 years now, IT has systematically been introduced into schooling but whilst the value of IT in education is clear, what is also clear is that education has the lowest levels of IT spending amongst any type of major enterprise – IT Spending by Industry Vertical Market, Worldwide. So are we likely to see a boost in the purchase and adoption of IT in schooling worldwide in 2012? The answer to this will depend a lot on spending on education ICT by governments.

Government Spending

According to Gartner, the current decision-making environment is dominated by demands to cut costs while improving operational efficiency and effectiveness. “Government organizations will continue to adopt technology innovation, but mostly in areas where technology is inexpensive” or “support more radical approaches to cost containment”. “By 2013, government financial sustainability will join cost containment as the top driver and constraint for government IT spending”. This isn’t a short-term trend either – “the continuing pressure to cut government budgets is likely to influence spending priorities for the next decade or more”.

Those of us wishing for a tipping point where schooling gets transformed at scale may be in for a wait. For many governments in 2012, “the key challenge will no longer be to transform, but to fulfil their statutory obligations”.

IT investments that enable transformational change “will be limited, especially by the politics of establishing budget priorities and the difficulties of institutional change”. However, these challenges and opportunities won’t be evenly spread, so let’s now look at how these forces are playing out in different parts of the world.

BRICs

Brazil – Microsoft’s Emilio Munaro says “there are more than 198,000 schools in Brazil and 98% of them now have computer labs”. “Tablet usage is growing fast, in many cases accelerated by popular touch enabled apps, but also long battery life which suits environments where electricity outlets are in short supply. However, broadband connection will remain as the challenge for Brazil in the next 3-4 years”.

Russia’s 2012-2014 budgets emphasise long-term development goals and the further introduction of ICT in schools. Expect to hear more about a significant new School of the Future project in the Moscow Region initiated by the Skolkovo Foundation.

The importance of using ICT for improving education in India has been emphasized in the policy framework for over a decade, and 2011 saw a number of large-scale device-lead initiatives. India is home to both one of the biggest IT workforces in the world, but also has incredible diversity in wealth and geography and this has lead to a wide range of solutions for both formal and informal learning. There’s every expectation that use of ICT in education will continue to grow and more innovations will emerge from India in 2012.

Meanwhile in China, mass school computerisation efforts are under way in rural Western China. “It is clear that Chinese support for the purchase of ICT infrastructure for schools will most likely increase greatly in the coming years” according to Michael Trucano from the World Bank.

Europe

The recent down-grading of credit ratings of some major European economies will mean that government borrowing in those countries will be more expensive, giving less room to manoeuvre on public spending. Whilst innovation and investment in ICT in schooling remains strong in many European countries, public sector austerity measures will inevitably cause disruption. However, one mitigating factor is that unemployment and the cost of school dropout is at the top of the agenda for many European countries, so investment in Education ICT may also be seen as a way to boost economic growth.

According to Mark East, General Manager for Microsoft’s Education Group “One thing is for sure; human capital is a nation’s greatest asset and Education will remain a priority investment area for most Governments”.

Asia

South Korea – already top of PISA and digital literacy skills tables – is surging ahead with a $2.4bn Education technology plan, now in its third phase of deployment. Many middle school and high school students now download and complete e-learning classes via their portable multimedia players as a matter of routine.

In Singapore, the government is driving technology lead innovation, and recently announced plans to digitise testing and examination systems.

USA

There’s a sense of big appetite for change in the USA, driven by a collapse in adequate levels of funding for schooling and the rapid growth in virtual schooling and online learning resources. The Department of Education is executing against a strong National Education Technology Plan and the USA is a hotbed of innovation in the education consumer space.

Teacher Shortages

The world urgently needs to recruit more than 8 million extra teachers, according to UN estimates. A worldwide shortage of primary school teachers threatens to undermine global efforts to ensure universal access to primary education by 2015.

According to the Guardian newspaper, at least 2m new teaching positions will need to be created by 2015, and an additional 6.2 million teachers will need to be recruited to maintain the current workforce.

This means that the 55m practicing teachers worldwide have increasing demands on their time as countries compete to raise education standards and develop the skills required for economic growth, at a time when the profession is short of the optimal workforce by 15%. As pointed out by Professor Sugata Mitra recently, “quality teachers simply don’t exist where they’re needed most”. “Talented teachers tend to be drawn away from relatively poor areas due to offers of better jobs or higher incomes. For these reasons, “we need new methods of learning”.

Whilst it’s clear that ICT can help governments achieve their education aims, the increased demand for teachers with ICT skills is clearly outpacing supply.

Consumerisation

Rapidly increasing availability of access to online learning sources, coupled with social networking is opening up a spectrum of low cost learning opportunities for students both inside and outside the classroom. MIT Open Courseware, Kahn Academy, University of the People, BBC Bitesize, Mymaths, Tutorhunt etc. all offer a supplement to teacher-lead “instruction”. Sugata Mitra’s “Hole in the Wall” project goes even further, offering learning where there simply are no teachers.

According to sources quoted by Larry Cuban of Stanford University, the worldwide market for self-paced eLearning products and services reached $32.1 billion in 2010 (about 50% of what formal education currently spends on ICT). The five-year compound annual growth rate (CAGR) is 9.2% and revenues will grow to $49.9 billion by 2015.

Clayton Christiansen, in his book “Disrupting Class” predicted that virtual schooling will force massive changes to formal schooling systems. By 2008, online enrolments for virtual schooling in the US had risen from 45,000 in 2000 to over 1 million, and there are no signs that this is slowing down.

A key component in consumerisation is social networking, and we’re seeing a lot of innovation in this space. For example, Microsoft’ recently announced So.cl which integrates search into the social learning experience.

Shifting Power

More Learning Please

Rising youth unemployment in Europe and the Middle East, globalisation and growth in developing countries are all fuelling the need for more knowledge, skills and competencies.

“People leaving our schooling systems, more now than ever, will need to be able to respond positively to the opportunities and challenges of the rapidly changing world in which we live and work. In particular, they need to be prepared to engage with environmental, economic, social and cultural change, including dealing with the effects of global warming and the continued globalisation of the economy and society, with new work and leisure patterns and with the rapid expansion of communication technologies.” (UK Qualifications and Curriculum Authority).

In the same way that there is limited funding available from the public purse, there is also limited time in the school day into which to squeeze the curriculum. Again, the implications are clear – more effective learning has to be implemented.

Mind the Engagement Gap

Commercial websites are increasingly become social sites, leaving a shortage of people to deal with social engagement on the scale required. The same pattern is happening in schooling where the teaching workforce does not have the capacity to deal with the explosion in the demands for skills and competencies, and the increasingly availability of online learning. As students’ technology capacity grows relative to that of teachers, an engagement gap between students and teacher is set to widen.

The answer to the engagement gap in commerce is the increasing use of “bots” and many sites now have fully or semi-automated live chat. In 2010, the average user of Facebook has 120 to 150 friends. Some of these “friends” are not real people, and many users find this to be quite natural. Gartner predicts that by 2015, 10% of your online “friends” will be nonhuman. It’s a reasonable bet that some of these online friends will be virtual tutors.

What will the answer to the engagement gap in schooling look like? Professor Sugata Mitra explores the theory that, given unrestricted and unsupervised access to the Internet, groups of children can learn almost anything on their own. Few – myself included – would advocate this as a universal approach to schooling, but it’s clear that technology enhanced independent and social learning offers answers to both the lack of teachers and the need for more effective learning.

Irresistible Forces Meet the Immovable Object

So the forces of consumerisation, increased learning requirements, and the demand for relevant ways to engage are beginning to weigh heavily on institutionalized learning.

According to Gartner, “the homogeneous learning and technology environment of the last century is fading fast. Moreover, the ivory tower mentality of education agencies is disappearing to reflect changing needs and values”.

These irresistible forces, however, will continue to meet an immovable object – schools. Whilst the nature of schooling will surely change, children will still be going to places called schools run by teachers well into the foreseeable future. Schools have responsibilities beyond academic learning. Parents and voters want schools to socialize students into community values, prepare them for civic responsibilities, and get them ready for college and career. Technology enhanced independent learning alone cannot meet those demands.

Big challenges for 2012

So the 2012 landscape will be dominated the necessity to provide more learning at less cost, against a backdrop of human capacity shortages and students faced with greater consumer choices.

Schooling IT leaders must balance the demands of supporting today’s environment, addressing the demands of the education stakeholder community, and preparing for a technology-driven transformation of the education ecosystem.

So what, then, are the big education technology challenges for 2012?  Its my belief that there are three big problems to crack, and that in 2012 market forces will drive progress in each of these areas.

1. ROI

2. Personalising Learning

3. National Education Networks

ROI

I start with ROI because in times of squeezed budgets it’s essential that both institutions and suppliers are able to identify which budget lines have the greatest and least impact on the learning “bottom line”, and identify where investments will have the most positive effect. At the very least, I’d expect it to at least become more acceptable to talk about ROI for investments in education technology. As discussed in detail in this blog – Lets Talk About Money – the idea of at least attributing “cost per unit learned” to investments should have become standard practice by now.

Personalised learning

For at least 10 years, the goal of personalized learning has been talked about, pursued as a strategy, dropped when found too hard to execute, and then talked about again. So, could 2012 be the year when personalizing learning at scale begins to take off?

I’m optimistic that we’ll see some progress in this space this year, because Personalising Learning can address so many of the problems that schooling currently faces. When we also add the learnings that we now have from games-based-learning, neuroscience and Artificial Intelligence (see Artificial Intelligence in Schooling Sytems) we seem to have all the technical building blocks in place. Personalised Learning also fits the trend towards consumerisation really well.

Think of Personalised Learning from a student’s perspective as “My Learning My Way”. To get to My Learning My Way, there are several key elements:

My technology my way

As discussed in detail in the BYOD/C article, the emergence of low cost technological supplements and alternatives to institutional “instruction” is growing at an increasing pace. Yes, the state will always have a role in providing a “base level” of appropriate technologies for learners, but the reality is that students across the world are “doing it for themselves”, learning on their own devices using software and learning services of their own choice.

The biggest challenges in this area are to ensure equality of access to opportunties, and stopping the adoption of “lowest common denominator” technologies, learning applications, services and devices.

My pathway my way

Learning can be said to be ‘personalised’ when students have a unique set of pathways through their learning. Clearly, at early stages younger learners need a lot of adult support with learning decisions, but as learners progress through their schooling they need to become more independent – and that independence can be supported with technology. Personalised Learning is a characteristic of the Transformed Phase of schooling and discussed in the “Transformed Phase” of this blog.

For personal learning pathways to work well, three key problems need to be addressed:

Firstly, assessments – both high and low stake – need to be ported into the electronic domain. Increasingly we’re seeing this happen. In Norway, for example, national tests at level 5, 7 and 9 ++ and exams in upper secondary and now administrated electronically.

Secondly, data from assessment and ongoing learning tasks needs to be used to make effective decisions about what learning tasks need to be undertaken, and when. The resulting learning pathways need to be challenging but achievable and “in tune” with how individual students learn.

Thirdly, the difficult problem of Dynamic Timetabling needs to be solved. This is where the time students spend in formal schooling is determined not by a pre-determined matrix of subjects and timeslots allocated according to age and classes, but by a system that matches their precise learning requirments against the resources needed to meet these. The problem can, to a point, be addressed through CRM, but it will take an evolution in schooling management techniques as well as technology developments to solve this problem.

My content my way

The model of purchasing standard textbooks for all students must surely come under more intense questioning in 2012. Companies such as Triba Learning from Finland are offering fascinating glimpses of new models where data and algorithms are used to generate value. Triba uses data to segment students into increasingly granular groups that exhibit similar learning dispositions. Powerful algorithms are used to analyse how they best learn and select appropriate content. School districts save money through using this system to purchase only the content that best fits the learner’s requirements – as opposed to having to buy large sets of books which may only ever be partially used.

Content itself needs to change radically too. “Our high school kids are fantastic teachers,” said Professor Harry Kroto, talking at NEST 2011 about the GEOSET project, in which students record lectures that can be freely accessed online. Creating content leads to more learning than merely consuming content, so “atomising” content into building blocks that can be reassembled into customised materials by students and teachers is a clear way forward.

Whilst content and learning sofware has evolved to accommodate visual, auditory and kinesthetic learning styles, the next frontier is the use of neuroscience to make learning more engaging. We are learning more about the science of learning, and how to drive the motivation to learn. Emerging game-like learning software makes use of the individual’s natural reward system which helps them to learn which action has the most valuable outcome. Software can be designed to emulate a teacher who constantly adapts to current learner understanding. Thus software can enable far more effective learning than is often possible through one-to-one teaching.

My data my way

The standard way of looking at student related data is that it should be “owned” by the institution. But to get to truly personalised learning there needs to be a paradigm shift – one that is prepared to accept that the ownership of the data resides with the student, and their parent or gaurdians.

A similar idea sits behind Microsoft’s “Health Vault”. This CRM based solution enables individuals to store their own health records in the Cloud and then grant access to these records to trusted people – doctors/relatives etc. Health Vault has evolved into a platfrom with an online marketplace for applications and even USB devices that can be used to monitor and manage health issues. This idea isn’t new in education though – e-portfolios have long been based on similar principles.

For school students, it would be essential to integrate personally held data with the data held in formal schooling institutions. According to Stephen Coller from the Gates Foundation, its not possible to build large scale data driven solutions without going through formal schooling data systems and subsystems. For example, to integrate with class rosters, enrollment systems have to be accessed. According to Coller, there needs to be:

  • A unifying middle layer that eliminates the need for solution providers to integrate with each school’s systems

or

  • a trust framework and ‘digital locker’ that gives users control over their own data and records

and

  • A badging or certificate framework that spans formal and informal learning

When thinking about large scale data systems, the question is whether exisiting data is sufficiently rich or accessible enouhg to justify the huge efforts required to get more than a basic dataset shared between the stundent and the institution, or whether it would be easier to rearchitect the entire system from scratch based on the new paradigm.

Either way, a core problem which needs to be solved in this area is “Micro Federation” – ie the concept that a student with their own “digital locker” can grant and control access to that data to trusted 3rd parties. The benefit to the institution is access to data to help decision making at micro and macro levels. The benefit to the student is having their learning supported in ways that may have been difficult to achieve otherwise. To achieve Micro Federation, there are some key areas that need to be addressed including:

• Privacy

• Security

  • Authorization
  • IDs and authentication
  • Encryption

• Transaction models

• Interaction models

• Interconnection technology

• Interfaces

National Education Networks

Greater personalization requires improved interoperability between data, content, assessments and applications. But to scale personalised learning, we need to be able to solve big problems in the areas of data management; decision automation; individualised learning pathways; and content. To do all this requires National Education Networks (NEN). The purpose of an NEN is to:

  • Improve data flows for the benefit of students, within and between end-users and schooling institutions, regionally and nationally.
  • Provide a stable platform for learning and innovation based on interoperable systems
  • Reduce the technical burden on schools, allowing them to focus on the use of technology in teaching and learning rather than its management

Few countries have built NENs, but the UK is one country that has. In 2004, the BECTA – the British governments ICT agency – produced detailed plans for a national level network infrastructure for schools. This became the National Education Network – http://www.nen.gov.uk/

So what are the key problems that need to be solved in building a National Education Network? Firstly, a National Education Network should have three architectural layers:

  • Services
  • Interfaces
  • Infrastructure

Services

The services layer should define the outcomes required from the NEN. Key questions that need to be addressed are:

  • What services do we want the NEN to deliver?
  • To whom and when?
  • At what costs and return on investment?

This leads to functional decisions about three key elements – interfaces that expose the functions of one system to other systems; what operations are performed within a service function; what messages are inputted and outputted from service operations.

A well-designed NEN should provide a services platform on four levels:

  • Connectivity services linking all elements of the model together, safely and securely connecting end-user stakeholders to the internet and wider educational community
  • A marketplace for institutions and individual students to purchase and consume learning services including content; personalised learning management systems; and management information system
  • Data services including data warehousing, management information systems (MIS) and a range of data mining tools
  • An R&D “sandbox” using anonamised data about learning to enable software entrepreneurs to build ever more effective personalised learning solutions

Interfaces

An interface is a shared boundary across which information is passed. In an ideal NEN students own the data, and share selective parts of it with schooling systems, Local Education Authorities/Municipality/State, the Ministry of Education, parents/guardians and ultimately prospective Higher/Further Education institutions or even employers. Different stakeholders would need different information – the Ministry of Education, for example, would need much less information than the school.

For data to move effectively across the system, trust relationships need to exist between these boundaries. In a NEN, interfaces can be specified to manage the flow of data; monitor status; manage assets; and even control devices.

Defining interfaces trust relationships, and data exchange methods across a large population may be complex, but it offers huge potential in terms of increased effectiveness and cost savings.

Infrastructure

The Physical Network component of an NEN has multiple layers and requires at least the following to be designed:

  • Infrastructure
    • Access models – radio and television, digital devices, computing
    • Topology, IP addressing, naming
    • Plumbing, traffic routing
    • Storage
    • Network control
    • Security
  • Establishing Physical Security
    • Creating a secure physical boundary for critical communications equipment
    • Protecting the Network Elements
      • Securing routers, switches, appliances, VoIP gateways and network devices define network boundaries and act as interfaces to all networks
      • Designing the IP Network…
        • … based on sound IP network design principles
  • Directories and Control
    • User directories
    • Asset catalogues
    • Identity management
    • User management

A comprehensive design blueprint for a National Education Network is the BECTA specification for the UK’s NEN.

NENs for Personalised Learning

The ultimate goal for a NEN is to enable personalised learning at scale and cost-effectively. For that to happen several “moving parts” need to synchronise. At the start of the cycle, data about learning is used to present students with appropriate learning opportunities through tailored content. Students progress through these tasks through individual pathways. As they do, they generate data and different aspects of that data are used by different stakeholders for different reasons. The data is managed and communicated via the National Grid for Learning, and the marketplace platform within the NEN acquires appropriate content for the learner’s on-going learning process, starting the cycle over again.

Standards

Take a NEN with interfaces across the 5 boundaries described above. If each boundary handles 10 different types of data, then roughly speaking there are 105 (100,000) “sub-interfaces” that have to successfully connect to make the system function properly. The complexity increases dramatically when you add complexities such as data formats and exchange methods.

To reduce complexity in NENs, standards are a key consideration. I say a “consideration” rather than “the answer” because there are two different perspectives to take into account.

From a vendor point of view, standards can get in the way and increase costs. Typically, solution developers will build large scale Schooling Enterprise Architectures up to LEA or even state level, but rarely at national level. At these levels vendors generally find it easier to not have to conform to standards as this gives them freedom to design information systems to their own specifications and re-use IP and technologies from other similar projects.

From a NEN commissioning body (e.g. Ministry of Education) perspective, standards that are open and not driven by vendors are a key way to reduce their overall costs and complexity. For example, a NEN will require the integration of separate datacentres at municipality/LEA/State levels. Without standards, proprietary interfaces must be reworked for each new system added. It is simply easier if everyone does it the same way; so each datacentre should require just one standard interface which:

  • Standardizes the dialogs, messages, and data elements
  • Standardizes user interfaces to the system
  • Allows a single external interface with different agencies, enabling cooperation and coordination between them

Standards need to deliver value at both macro and micro levels. Standards that are developed at the national level may include information that local systems will not use. On the other hand, standards may need to be supplemented with additional information to meet local needs.

A noteworthy national level IT infrastructure for public services is the National Transportation Communications (NTCIP) system in the US and there is much that is transferable from NTCIP to the design of NENs. NTCIP is a set of standards for interoperability between computers and electronic traffic control equipment that covers the US and is now being adapted for implementation in other countries. A key to the success of this is system is how standards are integrated into the model. For example, for a system to be a part of the NTCIP “Management Information Base”, a set of mandatory objects are required, but to enable local adaptation, specified optional objects are permitted. To minimise cost, risk and complexity, the NTCIP Management Information Base is public, not proprietary.

Education has a long way to go to catch up with how NTCIP uses standards.

Key challenges in building NENs

There are many major challenges to building NENs including:

  • Selecting and building an appropriate framework of international standards and prescriptive methodologies, and ensuring public ownership of the overall model
  • Data aggregation and interoperability
  • Reconceptualising NENs to put the student at the centre

National Education Networks are certainly complex, but with the methods and standards now available, and the overall gains that they can bring there is every reason to expect to see an increasing number of national level education network projects in and beyond 2012.

Technology Trends in 2012

IT organizations must balance security against access, and meet the growing expectations of individuals who are more technology-savvy than ever before. As consumerisation grows and budgets get cut, IT leaders in education are becoming increasingly open to leveraging personally owned devices and external Web 2.0 services as well as to delivering information and services beyond their physical campuses.

This is shaping what IT and digital services will increase in significance in 2012, as summarised in the table below:

Enterprise computing Consumer computing
Wireless aaS Social-Learning Platform for Education
Federated Identity Management Windows-Based Tablet PCs
SIS International Data Interoperability Standards E-Textbook
Hosted Virtual Desktops Social Media in Education
Cloud Email for Staff and Faculty E-Portfolios
Unified Communications and Collaboration Mashups
CRM Lecture Capture and Retrieval Tools
BYOC strategies Media Tablets

At the NEST conference in Hong Kong, Facebook Co-founder Chris Hughes pronounced that “the textbook is dead”. “In the next five to seven years, the textbook is no longer going to be the basic building block of education.”

The challenge for education institutions in 2012 is to treat the pending changes as an opportunity and navigate into the future, making sound decisions that focus on learner achievement, and develop strategies and adapt organizational structures that embrace a world of choice.

The challenge to the education technology industry in 2012 is to ramp-up proofs of concepts that demonstrate how technology can viably personalise learning on a large scale.

A Chinese proverb says, “May you live in interesting times”. In the world of education technology, 2012 should prove to be a very interesting year indeed.

Happy New Year!

Schooling Solutions Workshop, London, January 12, 2012

If you are in London on the 12th January for BETT, come and join us at our  Schooling Solutions Workshop.

Key questions that the workshop will address include:

  • How can standards be raised whilst reducing costs?
  • How can you take advantage of trends such as personalization, BYOD, Cloud and virtualization?
  • What approaches can you take to simplify and improve ICT services?

This workshop will bring you up to speed with the latest worldwide trends in education technology and give you practical methods and approaches that you can use immediately. It will be a mix of formal presentation and round-table discussion with world-class experts and leaders in their fields.

Designed to help decision makers plan more effective, efficient and inspiring systems, the workshop will provide an understanding of the Microsoft technology roadmap, solutions for access, connected communities and analytics, and offer the opportunity to work in groups with experts.

Agenda

Time Session
09.00 Solutions for Schooling
10.00 E-Learning
10.30 Institutional Effectiveness and Efficiency
Round-table – project planning sessions
11.00 Access
Managing large scale access programs
Learning
Using ICT to increase learning outcomes
OperationsUsing data to improve decision making
12.30 Reflection & Networking Lunch
  • Date: Thursday, 12th January, 2012
  • Time: 09:00 – 13:00 followed by lunch
  • Location: Microsoft Offices, Cardinal Place, 100 Victoria Street, London, SW1E 5JL

Confirmed speakers/facilitators include Mike Lloyd, Sarah Armstrong, Matthew Fox, Edgar Ferrer Gil, Fotis Draganidis, and Thomas Hauser .

To book your place, contact your local Microsoft Education representative, message me on Facebook, or drop me an email

Let’s Talk About Money

Working with some European countries recently has brought the issue of money – and how it relates to technology – into sharp focus. This article argues that in times of shrinking budgets, there is a strong case to make more, not less investment in ICT.

Should money be spent on ICT in schools at all?

With education budgets under pressure, and often having to cover not only schooling but broader children’s services too, a question that seems to be increasingly raised is whether money should be used for ICT in schooling at all.

To those of us involved in ICT in schooling, the answer seems an obvious “hell yes”. However, to a senior decision maker, ICT is usually just another cost. Of the $2.4trn spent on schooling every year, ICT is just a “drop in the ocean”. To someone looking at budgets at a high level, ICT will be buried amongst many other budget lines, not least staffing (sometimes as much as 80% of whole budget) and physical buildings – the schooling “estate”. Regardless of budgetary conditions, it’s always important to consider how ICT can be used as a strategic asset.

Whether choosing to invest in more staff, the physical environment or ICT, the decision making process should be set in the context of measurable, desired outcomes. Only when the required outcomes are known does it make sense to think about where to make or cut investment.

The key areas where investments in schooling should be expected to have outcomes and impacts are:

  • Academic — qualifications; acquisition of 21st Century skills; test results; and “Value Added”
  • People — high performance; organisational health; staff retention; staff qualifications; stakeholder satisfaction
  • Operational Excellence — efficient and effective processes; fit for purpose environments; spaces that are appropriate for effective learning; demonstrable value for money

ICT can impact deeply in all of these areas, enabling each type of expenditure to have maximum effect. Let’s now take a look at some of these in more detail.

Academic Attainment

A big question is whether – and to what extent – ICT can raise student attainment. Isolating the impact of ICT from all other contributory factors can be problematic. However, positive relationships between ICT use and improvement in subject-related learning have been found in several subject areas.

In 2006, for example, a research project conducted by Becta (the British Educational Communication and Technology Agency) investigated the effects of ICT on educational attainment, based on evidence gathered from 60 schools in England. This research analysed the relationship between the pupils’ performance in National Tests and GCSE’s (secondary school exit examinations) and their reported use of ICT at three age levels (11, 14, 16). The study found evidence of a statistically significant positive association between ICT and higher achievement, particularly in national tests for English, Science and Design & Technology.

The graph below depicts the relative positive impact of ICT on certain subjects.

A second UK project – “Test Bed, 2002 to 2006” – confirms that technology may lead to an improvement in test performance relative to ‘benchmark’ comparators. Test Bed schools showed higher learning performance in English – 4.68% vs 4.09. They showed significant comparative increases in mathematics test scores. Additionally, the number of secondary pupils achieving A to C GCSE grades had significantly improved over the course of the project. The Test Bed project showed that just one year after technology had been implemented, there was improved attainment. From this report, it is possible to quantify the effect of an ICT investment and to show the cost of achieving an improved outcome.

However, sceptics could argue that the UK, which has traditionally spent significant amounts of money on ICT in schools, declined in the PISA international ranking in recent years – hardly demonstrating good evidence of improved attainment associated with significant ICT spend. Perhaps then we should look at a set of countries that lead the world in schooling attainment – the Nordic countries.

E-learning Nordic 2006 shows that ICT has a positive impact on improving the pupils’ learning. A positive impact of ICT on teaching is seen on pupil engagement, differentiation, creativity and less waste of time. The study also shows that the preconditions for using ICT for knowledge sharing, communication and school-home co-operation are beneficial.

Echoing these findings, the 2006 OECD study entitled ‘Are pupils ready for a technology rich world?’ tells us that there is an association between the length of time students had been using computers and their PISA Mathematics scores.

For additional background, look at “The ICT Impact Report – A review of studies of ICT impact on schools in Europe” from European Schoolnet.

Despite these pieces of evidence, the truth is that there is very little hard research clearly demonstrating that ICT directly improves learning outcomes. The direct cause and effect of technology on test scores and exam results is very hard to pin down. Some would even argue that this is no longer even a relevant question – what matters more is that if schools see the value of students acquiring 21st Century Skills then ICT is an undeniably crucial tool.

Whilst it’s fairly clear that ICT makes learning more effective when properly implemented, it’s by no means easy to quantify the degree to which this is the case.

People

Clearly, people are any organisation’s biggest asset, and ICT has a role to play in terms of helping mangers set, manage and evaluate objectives and performance. Dashboards, KPIs and portals all have a role to play in helping staff align to organisational goals, and perform at their best and in ways that best serve the objectives of the organisation. Organisational health can be monitored through ICT systems, helping to reduce staff turnover – which is estimated to cost 1 year’s worth of salary for each person leaving an organisation.

Continuous Professional Development is another area where ICT can play a role. In Maryland, for example, it used to take 18 months for a teacher to receive a certificate after completing training. After the introduction of a CRM system, that time was reduced to a few days.

Finding out if stakeholders are satisfied with a system is made much easier with online tools such as e-forms and surveys. Analysing the data and discovering areas of dissatisfaction is again made easier through the use of ICT.

Operational Excellence

A concept worth exploring is the use of analytic systems to precisely target investments to where they needed, and then understand the return on that investment. Imagine a schooling system that has extremely low Science scores. One approach could be to throw resources across the entire system in a National Science programme aimed at raising Science standards generally. A better approach is to use analytics to deeply understand the causes of the problem and then to use this information to remediate it. Out of the thousands of potential contributory factors, analytics could help identify those factors that have the biggest impact on the results, and enable much more precisely targeted resourcing to address those issues. The net is raised standards at a fraction of the cost of the “scatter gun” approach.

A lot of money can also be wasted where future conditions are inaccurately forecast and planned for. Predictive analytics has role in:

  • Predicting the needs of students, teachers and stakeholders.
  • Modelling possible local, regional, state, or national trends that will affect schooling and the  programmes offered
  • Forecast workforce, resource and budgetary requirements

Finally, energy savings can be made easier with “smart environments”. ICT enabled security services can also help reduce costs.

Saving Money With ICT

So let us now go deeper into the operational side of schooling and further explore where ICT can directly save money. After all, the implementation of ICT in other sectors has mainly been in the pursuit of driving out costs. Schooling is different to other sectors, but there is no reason why the rules of high performance in other sectors can’t be applied here.

Administration

Administrative costs can be enormous; particularly where schooling is managed centrally and detailed reports and strong compliance is required. Technology can save time and money by making processes such as reporting, timetabling, student record keeping, examination, attendance, HR, and financial management faster and more efficient.

At each step of the administration process – Monitoring → Analysis → Planning – ICT can cut costs through decision support and decision automation enabled by automated workflows.

Areas for both cost savings and increased efficiencies include moving from paper reports to KPIs and dashboards.

Technology also has fantastic potential for easing the teacher workloads. For example, assessing students is a labour intensive process for teachers everywhere, but technology can play a role in helping teachers and stakeholders understand students’ knowledge capabilities and skills. In a Virtual Learning Environment, for example, students can undertake learning tasks which can be assessed and reported on automatically.

Effective resource management can lead to greater efficiencies especially where a Resource Management or Enterprise Resource Planning (ERP) system is used. ERP systems includes financial, supply chain and human resource management sub-systems, together with analytical and programme management tools.

Enterprise Resource Planning can be used for:

  • Financial management
  • Supply chain management
  • Business intelligence
  • Performance management
  • Project management
  • Human resource management
  • IT management

Shared Resourcing

Many services consumed by schools can be aggregated, and Cloud services are accelerating this. Managing content, data, interventions, HR, IT support, specialist learning services, procurement and many other services are often better managed by consortia. Clearly, areas such as leveraging aggregated purchasing power can have an immediate financial impact. ICT – particularly communication and collaboration technologies – can enable consortia to be easily formed and flexibly managed.

Imagine the savings that could be derived from an aggregated set of Cloud services that enable a large number of schools to purchase goods and services through a simple mechanism for procurement, billing, supply-chain, and accounting.

Inspection

Sending inspectors to schools is an expensive method of quality assurance that involves checking work after the event, identifying sources of non-conformance, and taking corrective action.

This is a comparatively inefficient method for achieving a basic level of quality. It requires the employment of people to check on operations, and inspection doesn’t add value to the service – it merely adds to the cost. ICT can be used to enable schools to self-inspect, and address quality and performance issues. This enables a smaller face-to-face inspection team to ensure that schools are aligned, complying with reporting guidelines, and dealing with the exceptions.

Examination and Assessment

Public examinations are a huge industry. In England, for instance, PricewaterhouseCoopers estimated that the cost of running the examination system in 2003-04 was $915 million. (QCDA, 2005).

ICT can open up new ways for students to demonstrate and authenticate their understanding, skills and abilities, at comparatively low cost. E-portfolios, distance peer assessment, electronic testing, assessments and video presentations are all readily accessible to many students. ICT can be used to go beyond “rear view mirror” assessments, as it makes it possible to access and analyse student achievement data on an on-going basis, and take corrective action before high stakes examinations.

Risk Management

The hidden cost of ineffective learning

Most of the rioters in the recent English riots had low education achievement. Across the world, the hidden costs of disengagement and poor academic performance are enormous, and have a range of impacts such as:

  • Crime, drug use, teenage pregnancy etc
  • Poverty related health issues
  • Future tax revenues
  • Low participation in e-citizenship

A recent European Commission study puts the lifetime cost of dropping out of school early at between 1.1 and 1.8 million Euros per person. In Finland the cost is estimated at 27,500 Euros a year. In Spain, for example, dropout rates are running at 30%, so making even a small impact on this number can make a big difference. ICT solutions such as SIGMA – an early warning and intelligent intervention system in the United States – have potential for significant positive economic impact by anticipating which students are most at risk, then intervening before problems become serious.

Whilst ICT is just one of many factors affecting academic performance, it’s reasonable to assert that an investment in engaging children and supporting their learning with ICT should have a payback. Decision makers seeking both quick wins and longer term benefits can use ICT mediated intelligent intervention techniques to address a range of schooling related issues – academic and social.

For a deeper analysis of how risks can be managed through intelligent intervention, see “Managing Student Relationships” article.

Saving ICT Costs

ICT itself can be made more cost effective in a number of ways, and through virtualization and Cloud services in particular. Software licensing is an easy target for cuts, but the reality is that it accounts only for 14% of ICT spend at the most and in some cases as little as 5%.

The key is to use software to drive down ICT costs, and virtualisation and Cloud technologies offer a range of ways to reduce utility, facility (e.g. electricity and property), hardware, maintenance, and support costs.

Other approaches include using systems such as Windows Multipoint Server to “breathe new life” into old hardware, and re-using older, refurbished computers through, for example, the digital pipeline initiative.

Understanding ROI

Return on Investment is a highly contentious issue in schooling because there are just so many factors and variables to take into account. However, understanding ROI is crucial – without it, concrete plans are much harder to make manage.

At a very simple level you could argue that ROI can be stated as the number of units of learning completed divided by the cost. Schooling systems are ecosystems, so we need to consider a range of other factors too.

According to Cranfield University School of Management, all benefits can be measured to one degree or another, and the main categories of benefit are:

  • Financial—can it be converted to money?
  • Observable—can you see it, or find evidence of it?
  • Quantifiable—do you have the figures available now, somewhere?

ROI can be thought of in value terms too. For example, economic value, which needs to be understood at the level of contributing human capital to local, regional and national economic development plans.

Social value—clearly the domain of schooling—is more complex, but the Harvard Business School offers some useful insights:

“… Social Value is ‘about inclusion and access.…’ Value creation in this arena can be measured using a social return on investment metric (SROI), social earnings calculations and other evolving metrics. SROI analysis attempts to identify direct, demonstrable cost savings or revenue contributions that result from… interventions. (Jed Emerson, Jay Wachowicz, Suzi Chun, 2001)

One clear example would be to connect citizenship programmes with reductions in crime, or healthy eating programmes with reductions in healthcare costs.

Steps to Establishing ROI

The London Borough of Hillingdon produced an excellent model for understanding ROI across a range of public services. The following is based on this work (Simon Willis [Editor], 2005).

The first step is to list all the benefits that come from an initiative across all stakeholders. The second step is to categorise those benefits into three groups:

Financial Benefits

Those that will (when delivered) realise hard tangible cost savings, e.g.

  • Reduced property and utility costs
  • Reduced facilities management costs
  • Reduced recruitment costs
  • Cheaper, faster procurement—enabled by online procurement
  • •Reduced postage costs—swapping from manual post to email.
Efficiency Benefits

These are productivity improvements – e.g. employee time saved from web-enabled self-service. They can either be banked as financial savings or alternatively counted as ‘free’ resources to be reallocated elsewhere.

E.g.

  • Greater productivity—increased staff motivation from flexible working
  • Reduced staff turnover—improved work-life-balance
  • Better use of specialists—focus on value-added tasks via job redesign
  • Greater efficiency in data handling from access to electronic information
  • Reducing resource duplication
  • Reduced admin from standardisation of responses—e.g. communication to parents
  • Parent and student self-service using online forms/transactions
  • Enhanced performance-monitoring through tracking/data
  • Simplified supply chains.
Human Capital Benefits

Those benefits that cannot be converted with any degree of reliability into cash or productivity gains, but are the core operation of schooling—i.e. the number of units learned:

  • Academic Qualifications
  • Vocational Qualifications
  • 21st Century Skills

An example of how this can be brought together for an investment in a schooling system is as follows:

In this example, for a total investment of $1.5m, during Year 1 of the modernisation project an additional 500 units of learning has been outputted and other benefits to the equivalent amount have accrued. Using this example, you’d expect to see increased ROI over time as capital expenditure decreases while the benefits persist.

Setting out the ROI in this way clearly illustrates where investments need to be made, where costs can be reduced, and impacts best gained.

According to ICT Nordic report, “return on investment from ICT investments requires a commitment to organisational implementation on the part of the school management. They must be visionary enough to initiate and continuously support the use of ICT as a strategic tool for developing the general ambitions of the school.

In conclusion, in times of budget constraints, there is a strong argument to make more, not less ICT investment. ICT can be a strong strategic asset to increase academic and people performance and drive operational efficiencies. It can be used to save money in areas such as administration, inspection, examinations and assessment, and managing risks. For ICT to have financial impact it needs to be deployed with accuracy and in pursuit of clear goals. It also needs to be managed in an environment in which ROI is understood.