2012 – The Year of Constructive Disruption?

This article is a personal perspective of the key Education Technology trends that we can expect to see in 2012. Whilst not expecting anything as apocalyptic as the Mesoamerican Long Count Calendar theory, my belief is that the world of education technology will see new and powerful disruptive forces in 2012. Whilst there are certainly very challenging times ahead for public sector institutions and the industry that serves them, innovation is accelerating too and new technologies and approaches will offer creative solutions for those who are prepared drive, or at least accept, change.

Mark Anderseen writing in the Wall Street Journal in August 2011 proposes that “Healthcare and education are next up for fundamental software-based transformation”. Education, Anderseen contends, has historically been highly resistant to entrepreneurial change, and is now primed for ‘tipping’ by new software-centric entrepreneurs”. This article explores the forces of technological change that are priming education for ‘tipping’, and what form that ‘tipping’ could take.

Forces of Disruption

As we start 2012 we enter uncharted economic, social and political territories. Frontier Strategy Group, a Washington based provider of market intelligence, predicts that advanced economies will “muddle through the next 18 months with low growth but avoid a major recession”. Gartner, on the other hand, predicts that by 2014, “major national defaults in Europe will lead to the collapse of more than a third of European banks” – which will have significant consequence worldwide.

Gartner also predict that the control of technology is “shifting out of the hands of IT organisations… Cloud, social, mobile and information management technologies are all evolving at a pace”.

Developing markets are exerting an increasingly powerful influence too. According to Frontier, in the next 4 years, Latin America will consume more PCs than in the previous 30 years combined (276 million units). So much for the so called “post PC era”. At the same time we’re seeing the Asia/Pacific region emerge as one of world’s largest markets for devices, with an expected total market sales of more than 6.3 million tablets in 2011.

End-user expectations are rapidly changing too – “end users expect to get access to personal, work, applications and data from any device, anytime and anywhere”. Users and institutions are also demanding ever better power conservation too. The concept of “Big Data” is starting to “alter the relationship of technology to information consumption, as data coming from multiple federated sources in structured and unstructured forms must now be analysed using new methodologies”.

So what does all this mean for education technology? The first thing to consider is the fact that ICT expenditure in education in 2012 is coming off a comparatively weak platform. For at least 20 years now, IT has systematically been introduced into schooling but whilst the value of IT in education is clear, what is also clear is that education has the lowest levels of IT spending amongst any type of major enterprise – IT Spending by Industry Vertical Market, Worldwide. So are we likely to see a boost in the purchase and adoption of IT in schooling worldwide in 2012? The answer to this will depend a lot on spending on education ICT by governments.

Government Spending

According to Gartner, the current decision-making environment is dominated by demands to cut costs while improving operational efficiency and effectiveness. “Government organizations will continue to adopt technology innovation, but mostly in areas where technology is inexpensive” or “support more radical approaches to cost containment”. “By 2013, government financial sustainability will join cost containment as the top driver and constraint for government IT spending”. This isn’t a short-term trend either – “the continuing pressure to cut government budgets is likely to influence spending priorities for the next decade or more”.

Those of us wishing for a tipping point where schooling gets transformed at scale may be in for a wait. For many governments in 2012, “the key challenge will no longer be to transform, but to fulfil their statutory obligations”.

IT investments that enable transformational change “will be limited, especially by the politics of establishing budget priorities and the difficulties of institutional change”. However, these challenges and opportunities won’t be evenly spread, so let’s now look at how these forces are playing out in different parts of the world.

BRICs

Brazil – Microsoft’s Emilio Munaro says “there are more than 198,000 schools in Brazil and 98% of them now have computer labs”. “Tablet usage is growing fast, in many cases accelerated by popular touch enabled apps, but also long battery life which suits environments where electricity outlets are in short supply. However, broadband connection will remain as the challenge for Brazil in the next 3-4 years”.

Russia’s 2012-2014 budgets emphasise long-term development goals and the further introduction of ICT in schools. Expect to hear more about a significant new School of the Future project in the Moscow Region initiated by the Skolkovo Foundation.

The importance of using ICT for improving education in India has been emphasized in the policy framework for over a decade, and 2011 saw a number of large-scale device-lead initiatives. India is home to both one of the biggest IT workforces in the world, but also has incredible diversity in wealth and geography and this has lead to a wide range of solutions for both formal and informal learning. There’s every expectation that use of ICT in education will continue to grow and more innovations will emerge from India in 2012.

Meanwhile in China, mass school computerisation efforts are under way in rural Western China. “It is clear that Chinese support for the purchase of ICT infrastructure for schools will most likely increase greatly in the coming years” according to Michael Trucano from the World Bank.

Europe

The recent down-grading of credit ratings of some major European economies will mean that government borrowing in those countries will be more expensive, giving less room to manoeuvre on public spending. Whilst innovation and investment in ICT in schooling remains strong in many European countries, public sector austerity measures will inevitably cause disruption. However, one mitigating factor is that unemployment and the cost of school dropout is at the top of the agenda for many European countries, so investment in Education ICT may also be seen as a way to boost economic growth.

According to Mark East, General Manager for Microsoft’s Education Group “One thing is for sure; human capital is a nation’s greatest asset and Education will remain a priority investment area for most Governments”.

Asia

South Korea – already top of PISA and digital literacy skills tables – is surging ahead with a $2.4bn Education technology plan, now in its third phase of deployment. Many middle school and high school students now download and complete e-learning classes via their portable multimedia players as a matter of routine.

In Singapore, the government is driving technology lead innovation, and recently announced plans to digitise testing and examination systems.

USA

There’s a sense of big appetite for change in the USA, driven by a collapse in adequate levels of funding for schooling and the rapid growth in virtual schooling and online learning resources. The Department of Education is executing against a strong National Education Technology Plan and the USA is a hotbed of innovation in the education consumer space.

Teacher Shortages

The world urgently needs to recruit more than 8 million extra teachers, according to UN estimates. A worldwide shortage of primary school teachers threatens to undermine global efforts to ensure universal access to primary education by 2015.

According to the Guardian newspaper, at least 2m new teaching positions will need to be created by 2015, and an additional 6.2 million teachers will need to be recruited to maintain the current workforce.

This means that the 55m practicing teachers worldwide have increasing demands on their time as countries compete to raise education standards and develop the skills required for economic growth, at a time when the profession is short of the optimal workforce by 15%. As pointed out by Professor Sugata Mitra recently, “quality teachers simply don’t exist where they’re needed most”. “Talented teachers tend to be drawn away from relatively poor areas due to offers of better jobs or higher incomes. For these reasons, “we need new methods of learning”.

Whilst it’s clear that ICT can help governments achieve their education aims, the increased demand for teachers with ICT skills is clearly outpacing supply.

Consumerisation

Rapidly increasing availability of access to online learning sources, coupled with social networking is opening up a spectrum of low cost learning opportunities for students both inside and outside the classroom. MIT Open Courseware, Kahn Academy, University of the People, BBC Bitesize, Mymaths, Tutorhunt etc. all offer a supplement to teacher-lead “instruction”. Sugata Mitra’s “Hole in the Wall” project goes even further, offering learning where there simply are no teachers.

According to sources quoted by Larry Cuban of Stanford University, the worldwide market for self-paced eLearning products and services reached $32.1 billion in 2010 (about 50% of what formal education currently spends on ICT). The five-year compound annual growth rate (CAGR) is 9.2% and revenues will grow to $49.9 billion by 2015.

Clayton Christiansen, in his book “Disrupting Class” predicted that virtual schooling will force massive changes to formal schooling systems. By 2008, online enrolments for virtual schooling in the US had risen from 45,000 in 2000 to over 1 million, and there are no signs that this is slowing down.

A key component in consumerisation is social networking, and we’re seeing a lot of innovation in this space. For example, Microsoft’ recently announced So.cl which integrates search into the social learning experience.

Shifting Power

More Learning Please

Rising youth unemployment in Europe and the Middle East, globalisation and growth in developing countries are all fuelling the need for more knowledge, skills and competencies.

“People leaving our schooling systems, more now than ever, will need to be able to respond positively to the opportunities and challenges of the rapidly changing world in which we live and work. In particular, they need to be prepared to engage with environmental, economic, social and cultural change, including dealing with the effects of global warming and the continued globalisation of the economy and society, with new work and leisure patterns and with the rapid expansion of communication technologies.” (UK Qualifications and Curriculum Authority).

In the same way that there is limited funding available from the public purse, there is also limited time in the school day into which to squeeze the curriculum. Again, the implications are clear – more effective learning has to be implemented.

Mind the Engagement Gap

Commercial websites are increasingly become social sites, leaving a shortage of people to deal with social engagement on the scale required. The same pattern is happening in schooling where the teaching workforce does not have the capacity to deal with the explosion in the demands for skills and competencies, and the increasingly availability of online learning. As students’ technology capacity grows relative to that of teachers, an engagement gap between students and teacher is set to widen.

The answer to the engagement gap in commerce is the increasing use of “bots” and many sites now have fully or semi-automated live chat. In 2010, the average user of Facebook has 120 to 150 friends. Some of these “friends” are not real people, and many users find this to be quite natural. Gartner predicts that by 2015, 10% of your online “friends” will be nonhuman. It’s a reasonable bet that some of these online friends will be virtual tutors.

What will the answer to the engagement gap in schooling look like? Professor Sugata Mitra explores the theory that, given unrestricted and unsupervised access to the Internet, groups of children can learn almost anything on their own. Few – myself included – would advocate this as a universal approach to schooling, but it’s clear that technology enhanced independent and social learning offers answers to both the lack of teachers and the need for more effective learning.

Irresistible Forces Meet the Immovable Object

So the forces of consumerisation, increased learning requirements, and the demand for relevant ways to engage are beginning to weigh heavily on institutionalized learning.

According to Gartner, “the homogeneous learning and technology environment of the last century is fading fast. Moreover, the ivory tower mentality of education agencies is disappearing to reflect changing needs and values”.

These irresistible forces, however, will continue to meet an immovable object – schools. Whilst the nature of schooling will surely change, children will still be going to places called schools run by teachers well into the foreseeable future. Schools have responsibilities beyond academic learning. Parents and voters want schools to socialize students into community values, prepare them for civic responsibilities, and get them ready for college and career. Technology enhanced independent learning alone cannot meet those demands.

Big challenges for 2012

So the 2012 landscape will be dominated the necessity to provide more learning at less cost, against a backdrop of human capacity shortages and students faced with greater consumer choices.

Schooling IT leaders must balance the demands of supporting today’s environment, addressing the demands of the education stakeholder community, and preparing for a technology-driven transformation of the education ecosystem.

So what, then, are the big education technology challenges for 2012?  Its my belief that there are three big problems to crack, and that in 2012 market forces will drive progress in each of these areas.

1. ROI

2. Personalising Learning

3. National Education Networks

ROI

I start with ROI because in times of squeezed budgets it’s essential that both institutions and suppliers are able to identify which budget lines have the greatest and least impact on the learning “bottom line”, and identify where investments will have the most positive effect. At the very least, I’d expect it to at least become more acceptable to talk about ROI for investments in education technology. As discussed in detail in this blog – Lets Talk About Money – the idea of at least attributing “cost per unit learned” to investments should have become standard practice by now.

Personalised learning

For at least 10 years, the goal of personalized learning has been talked about, pursued as a strategy, dropped when found too hard to execute, and then talked about again. So, could 2012 be the year when personalizing learning at scale begins to take off?

I’m optimistic that we’ll see some progress in this space this year, because Personalising Learning can address so many of the problems that schooling currently faces. When we also add the learnings that we now have from games-based-learning, neuroscience and Artificial Intelligence (see Artificial Intelligence in Schooling Sytems) we seem to have all the technical building blocks in place. Personalised Learning also fits the trend towards consumerisation really well.

Think of Personalised Learning from a student’s perspective as “My Learning My Way”. To get to My Learning My Way, there are several key elements:

My technology my way

As discussed in detail in the BYOD/C article, the emergence of low cost technological supplements and alternatives to institutional “instruction” is growing at an increasing pace. Yes, the state will always have a role in providing a “base level” of appropriate technologies for learners, but the reality is that students across the world are “doing it for themselves”, learning on their own devices using software and learning services of their own choice.

The biggest challenges in this area are to ensure equality of access to opportunties, and stopping the adoption of “lowest common denominator” technologies, learning applications, services and devices.

My pathway my way

Learning can be said to be ‘personalised’ when students have a unique set of pathways through their learning. Clearly, at early stages younger learners need a lot of adult support with learning decisions, but as learners progress through their schooling they need to become more independent – and that independence can be supported with technology. Personalised Learning is a characteristic of the Transformed Phase of schooling and discussed in the “Transformed Phase” of this blog.

For personal learning pathways to work well, three key problems need to be addressed:

Firstly, assessments – both high and low stake – need to be ported into the electronic domain. Increasingly we’re seeing this happen. In Norway, for example, national tests at level 5, 7 and 9 ++ and exams in upper secondary and now administrated electronically.

Secondly, data from assessment and ongoing learning tasks needs to be used to make effective decisions about what learning tasks need to be undertaken, and when. The resulting learning pathways need to be challenging but achievable and “in tune” with how individual students learn.

Thirdly, the difficult problem of Dynamic Timetabling needs to be solved. This is where the time students spend in formal schooling is determined not by a pre-determined matrix of subjects and timeslots allocated according to age and classes, but by a system that matches their precise learning requirments against the resources needed to meet these. The problem can, to a point, be addressed through CRM, but it will take an evolution in schooling management techniques as well as technology developments to solve this problem.

My content my way

The model of purchasing standard textbooks for all students must surely come under more intense questioning in 2012. Companies such as Triba Learning from Finland are offering fascinating glimpses of new models where data and algorithms are used to generate value. Triba uses data to segment students into increasingly granular groups that exhibit similar learning dispositions. Powerful algorithms are used to analyse how they best learn and select appropriate content. School districts save money through using this system to purchase only the content that best fits the learner’s requirements – as opposed to having to buy large sets of books which may only ever be partially used.

Content itself needs to change radically too. “Our high school kids are fantastic teachers,” said Professor Harry Kroto, talking at NEST 2011 about the GEOSET project, in which students record lectures that can be freely accessed online. Creating content leads to more learning than merely consuming content, so “atomising” content into building blocks that can be reassembled into customised materials by students and teachers is a clear way forward.

Whilst content and learning sofware has evolved to accommodate visual, auditory and kinesthetic learning styles, the next frontier is the use of neuroscience to make learning more engaging. We are learning more about the science of learning, and how to drive the motivation to learn. Emerging game-like learning software makes use of the individual’s natural reward system which helps them to learn which action has the most valuable outcome. Software can be designed to emulate a teacher who constantly adapts to current learner understanding. Thus software can enable far more effective learning than is often possible through one-to-one teaching.

My data my way

The standard way of looking at student related data is that it should be “owned” by the institution. But to get to truly personalised learning there needs to be a paradigm shift – one that is prepared to accept that the ownership of the data resides with the student, and their parent or gaurdians.

A similar idea sits behind Microsoft’s “Health Vault”. This CRM based solution enables individuals to store their own health records in the Cloud and then grant access to these records to trusted people – doctors/relatives etc. Health Vault has evolved into a platfrom with an online marketplace for applications and even USB devices that can be used to monitor and manage health issues. This idea isn’t new in education though – e-portfolios have long been based on similar principles.

For school students, it would be essential to integrate personally held data with the data held in formal schooling institutions. According to Stephen Coller from the Gates Foundation, its not possible to build large scale data driven solutions without going through formal schooling data systems and subsystems. For example, to integrate with class rosters, enrollment systems have to be accessed. According to Coller, there needs to be:

  • A unifying middle layer that eliminates the need for solution providers to integrate with each school’s systems

or

  • a trust framework and ‘digital locker’ that gives users control over their own data and records

and

  • A badging or certificate framework that spans formal and informal learning

When thinking about large scale data systems, the question is whether exisiting data is sufficiently rich or accessible enouhg to justify the huge efforts required to get more than a basic dataset shared between the stundent and the institution, or whether it would be easier to rearchitect the entire system from scratch based on the new paradigm.

Either way, a core problem which needs to be solved in this area is “Micro Federation” – ie the concept that a student with their own “digital locker” can grant and control access to that data to trusted 3rd parties. The benefit to the institution is access to data to help decision making at micro and macro levels. The benefit to the student is having their learning supported in ways that may have been difficult to achieve otherwise. To achieve Micro Federation, there are some key areas that need to be addressed including:

• Privacy

• Security

  • Authorization
  • IDs and authentication
  • Encryption

• Transaction models

• Interaction models

• Interconnection technology

• Interfaces

National Education Networks

Greater personalization requires improved interoperability between data, content, assessments and applications. But to scale personalised learning, we need to be able to solve big problems in the areas of data management; decision automation; individualised learning pathways; and content. To do all this requires National Education Networks (NEN). The purpose of an NEN is to:

  • Improve data flows for the benefit of students, within and between end-users and schooling institutions, regionally and nationally.
  • Provide a stable platform for learning and innovation based on interoperable systems
  • Reduce the technical burden on schools, allowing them to focus on the use of technology in teaching and learning rather than its management

Few countries have built NENs, but the UK is one country that has. In 2004, the BECTA – the British governments ICT agency – produced detailed plans for a national level network infrastructure for schools. This became the National Education Network – http://www.nen.gov.uk/

So what are the key problems that need to be solved in building a National Education Network? Firstly, a National Education Network should have three architectural layers:

  • Services
  • Interfaces
  • Infrastructure

Services

The services layer should define the outcomes required from the NEN. Key questions that need to be addressed are:

  • What services do we want the NEN to deliver?
  • To whom and when?
  • At what costs and return on investment?

This leads to functional decisions about three key elements – interfaces that expose the functions of one system to other systems; what operations are performed within a service function; what messages are inputted and outputted from service operations.

A well-designed NEN should provide a services platform on four levels:

  • Connectivity services linking all elements of the model together, safely and securely connecting end-user stakeholders to the internet and wider educational community
  • A marketplace for institutions and individual students to purchase and consume learning services including content; personalised learning management systems; and management information system
  • Data services including data warehousing, management information systems (MIS) and a range of data mining tools
  • An R&D “sandbox” using anonamised data about learning to enable software entrepreneurs to build ever more effective personalised learning solutions

Interfaces

An interface is a shared boundary across which information is passed. In an ideal NEN students own the data, and share selective parts of it with schooling systems, Local Education Authorities/Municipality/State, the Ministry of Education, parents/guardians and ultimately prospective Higher/Further Education institutions or even employers. Different stakeholders would need different information – the Ministry of Education, for example, would need much less information than the school.

For data to move effectively across the system, trust relationships need to exist between these boundaries. In a NEN, interfaces can be specified to manage the flow of data; monitor status; manage assets; and even control devices.

Defining interfaces trust relationships, and data exchange methods across a large population may be complex, but it offers huge potential in terms of increased effectiveness and cost savings.

Infrastructure

The Physical Network component of an NEN has multiple layers and requires at least the following to be designed:

  • Infrastructure
    • Access models – radio and television, digital devices, computing
    • Topology, IP addressing, naming
    • Plumbing, traffic routing
    • Storage
    • Network control
    • Security
  • Establishing Physical Security
    • Creating a secure physical boundary for critical communications equipment
    • Protecting the Network Elements
      • Securing routers, switches, appliances, VoIP gateways and network devices define network boundaries and act as interfaces to all networks
      • Designing the IP Network…
        • … based on sound IP network design principles
  • Directories and Control
    • User directories
    • Asset catalogues
    • Identity management
    • User management

A comprehensive design blueprint for a National Education Network is the BECTA specification for the UK’s NEN.

NENs for Personalised Learning

The ultimate goal for a NEN is to enable personalised learning at scale and cost-effectively. For that to happen several “moving parts” need to synchronise. At the start of the cycle, data about learning is used to present students with appropriate learning opportunities through tailored content. Students progress through these tasks through individual pathways. As they do, they generate data and different aspects of that data are used by different stakeholders for different reasons. The data is managed and communicated via the National Grid for Learning, and the marketplace platform within the NEN acquires appropriate content for the learner’s on-going learning process, starting the cycle over again.

Standards

Take a NEN with interfaces across the 5 boundaries described above. If each boundary handles 10 different types of data, then roughly speaking there are 105 (100,000) “sub-interfaces” that have to successfully connect to make the system function properly. The complexity increases dramatically when you add complexities such as data formats and exchange methods.

To reduce complexity in NENs, standards are a key consideration. I say a “consideration” rather than “the answer” because there are two different perspectives to take into account.

From a vendor point of view, standards can get in the way and increase costs. Typically, solution developers will build large scale Schooling Enterprise Architectures up to LEA or even state level, but rarely at national level. At these levels vendors generally find it easier to not have to conform to standards as this gives them freedom to design information systems to their own specifications and re-use IP and technologies from other similar projects.

From a NEN commissioning body (e.g. Ministry of Education) perspective, standards that are open and not driven by vendors are a key way to reduce their overall costs and complexity. For example, a NEN will require the integration of separate datacentres at municipality/LEA/State levels. Without standards, proprietary interfaces must be reworked for each new system added. It is simply easier if everyone does it the same way; so each datacentre should require just one standard interface which:

  • Standardizes the dialogs, messages, and data elements
  • Standardizes user interfaces to the system
  • Allows a single external interface with different agencies, enabling cooperation and coordination between them

Standards need to deliver value at both macro and micro levels. Standards that are developed at the national level may include information that local systems will not use. On the other hand, standards may need to be supplemented with additional information to meet local needs.

A noteworthy national level IT infrastructure for public services is the National Transportation Communications (NTCIP) system in the US and there is much that is transferable from NTCIP to the design of NENs. NTCIP is a set of standards for interoperability between computers and electronic traffic control equipment that covers the US and is now being adapted for implementation in other countries. A key to the success of this is system is how standards are integrated into the model. For example, for a system to be a part of the NTCIP “Management Information Base”, a set of mandatory objects are required, but to enable local adaptation, specified optional objects are permitted. To minimise cost, risk and complexity, the NTCIP Management Information Base is public, not proprietary.

Education has a long way to go to catch up with how NTCIP uses standards.

Key challenges in building NENs

There are many major challenges to building NENs including:

  • Selecting and building an appropriate framework of international standards and prescriptive methodologies, and ensuring public ownership of the overall model
  • Data aggregation and interoperability
  • Reconceptualising NENs to put the student at the centre

National Education Networks are certainly complex, but with the methods and standards now available, and the overall gains that they can bring there is every reason to expect to see an increasing number of national level education network projects in and beyond 2012.

Technology Trends in 2012

IT organizations must balance security against access, and meet the growing expectations of individuals who are more technology-savvy than ever before. As consumerisation grows and budgets get cut, IT leaders in education are becoming increasingly open to leveraging personally owned devices and external Web 2.0 services as well as to delivering information and services beyond their physical campuses.

This is shaping what IT and digital services will increase in significance in 2012, as summarised in the table below:

Enterprise computing Consumer computing
Wireless aaS Social-Learning Platform for Education
Federated Identity Management Windows-Based Tablet PCs
SIS International Data Interoperability Standards E-Textbook
Hosted Virtual Desktops Social Media in Education
Cloud Email for Staff and Faculty E-Portfolios
Unified Communications and Collaboration Mashups
CRM Lecture Capture and Retrieval Tools
BYOC strategies Media Tablets

At the NEST conference in Hong Kong, Facebook Co-founder Chris Hughes pronounced that “the textbook is dead”. “In the next five to seven years, the textbook is no longer going to be the basic building block of education.”

The challenge for education institutions in 2012 is to treat the pending changes as an opportunity and navigate into the future, making sound decisions that focus on learner achievement, and develop strategies and adapt organizational structures that embrace a world of choice.

The challenge to the education technology industry in 2012 is to ramp-up proofs of concepts that demonstrate how technology can viably personalise learning on a large scale.

A Chinese proverb says, “May you live in interesting times”. In the world of education technology, 2012 should prove to be a very interesting year indeed.

Happy New Year!

Putting the “i” into Singapore Schooling

With top rankings in PISA and TIMMS, Singapore is the envy of many schooling systems around the world. Whilst ICT is just one of a range of factors that affect learning outcomes, it is a key tool for meeting at least two of the four key desired outcomes of the Singapore schooling system – for all students to become self-directed and collaborative learners.

Singapore was one of the first countries in the world to have a national strategy for ICT in Schools. A succession of well-planned, funded and executed programmes focussing initially on infrastructure and training, and more recently focussing on self-directed learning – has driven effective use of ICT. For details of Singapore’s main ICT projects, see http://wp.me/P16Iyp-46

A great showcase for the effectiveness of this investment is Crescent Girls’ School, a member of the “Future School” programme, and recently awarded the status of Mentor School by Microsoft. Crescent also hosted the CRADLE conference on 1st – 3rd August.

On the surface, Crescent could be any other Secondary School, but a quick glance at the trophy cabinet next to the reception makes it clear that this school is totally committed to high performance. Crescent’s aim is to be at the forefront of harnessing technology to enhance learning outcomes. ICT is used extensively in both delivery and assessment and the school’s 1300 students each have their own Tablet PC. The goal of using ICT is to give students a degree of choice over what they learn and how they learn.

The students engage in a wide range of activities including 2D, 3D animation and robotics; multimedia production; photo-shooting and editing; and development and use of e-books. Particularly impressive is the use of Tablet PCs’ “inking” features for a range of activities including highly impressive manga artwork.

Crescent is moving towards project based learning with a series of “Integrated Secondary Curricula” programmes.

Virtual Reality is used at the school too. For example, in Geography, students experience immersive content showing erosion in a river – a concept that is much easier to grasp when viewing 3d animated rocks being swept along by the current from the perspective of the river bed.

Particularly impressive at Crescent is the way that teachers engage in the content creation process. For example, a complete suite of applications and content have been developed for the Tablet PC that not only exploits the pen and inking technologies but also address a range of different learning styles.

Taking this process further, teachers specified collaborative games to take advantage of the MultiTouch features in Windows 7 and HueLabs’ “Heumi” multitouch (Surface) devices. This means that students can now engage in a wide range of collaborative learning experiences, such as learning to write Chinese. As impressive as the technology itself is the way in which the room in which the Heumi devices are deployed. Here, in the “iCove”, strong colour coding of the devices and the seating, enable teachers to group learners according to their learning objectives.

More recently the school has introduced a biometric system that not only automatically records the students as present but takes their temperatures as they come into the school in the morning, enabling their health to be monitored.

The infrastructure that sits behind Crescent’s ICT provision is highly impressive. The infrastructure foundation is a Campus-wide wireless network with 100 Mbps Broadband. Tablet PCs are stored in steel lockers, and batteries are charged at charging stations.

Approximately 30 on-premises servers perform a range of essential back-end functions from authentication to content management. The Server infrastructure – based on a Microsoft platform – supports a rich tapestry of capabilities including:

  • i-Connect Learning Space – a role based portal for organising student’s learning and activities
  • Pearson’s Write to Learn – a system that helps “automate” the marking of essays
  • HeuX – Huelabs Classroom Management System – with lesson management, digital book library, real-time Communication and Collaboration include notes-sharing and social media; screen monitoring and broadcasting; Presence awareness; attendance; Video Conferencing
  • i-Media – content management system.
  • Interactive books

These solutions are supported by Windows Server; SQL Server; Microsoft SharePoint Portal Server; System Center; Live Communications Manager; Hyper-V and Live@Edu. Much of the learning that takes place at Crescent happens after school hours, and the Virtual Private Network enables students to have 24×7 access. It’s not uncommon to see the portal being used by students at home at 2.00AM.

Singapore schools benefit from very high quality teachers (only 10% of applicants get admitted into teacher training). This is reflected in the staff at Crescent. Principal, Mrs Eugenia Lim, supported by Chief Technology Architect for Learning, Mr Lee Boon Keng, have a highly structured and team orientated approach, underpinned by a strong focus on continuous professional development.

Every hour, the chimes of Big Ben ring across the school signifying a change of lesson. As with Cornwallis School in Kent in the UK, I was totally inspired by what I saw at Crescent but couldn’t help wondering whether a shift from time-based to a performance-based model would better fit such a technology rich approach to learning. Nonetheless, Crescent’s use of ICT is without doubt world leading.

Whilst Crescent Girls’ School is clearly a leader amongst leaders, it’s far from unique in Singapore in the way in which it innovates with technology. Singapore schools benefit from long term, consistent policy and investment in ICT in schooling. With their structured approaches, strong management and deep understanding of how ICT can make learning more effective, Singapore schools look set to continue to show the world how it’s done.

Fortunately for us all, Crescent Girls’ School are “giving back” by encouraging people to visit the school – both physically and virtually.

Thanks to Eugenia Lim, Lee Boon Keng and all the staff and students at Crescent Girl’s School.

The Transformed Phase

This is the fourth and final article on the phases of transformation that schooling systems go through. The first was “Taking the First Steps”, and this phase is characterized by access. The second, Taking the Next Steps – The ‘Enhanced’ Phase, is where technology is used to enhance existing processes. The third -“The Strategic Phase” – is characterized by using technology to meet strategic goals and help determine what those goals should be.

Feedback that readers have kindly sent me had prompted me to adjust the overall maturity framework so each of the main characteristics of each phase now look like this:

Four Stages of Schooling System Maturity

Whilst the three preceding phases were about applying technology to schools as they currently are, the Transformed Phase is about fundamentally changing the nature of schooling itself.

Using ICT to transform schooling allows us to ask questions such as “where is school”, “how do we deliver personalised and engaging learning experiences”, and “how can we develop highly effective and efficient schooling systems”?

Whilst transformation will mean many different things to many different people, there are three main ingredients to a transformed schooling system.

The first is providing anytime, anywhere learning for all citizens. The second is providing highly personalised experiences to all learners. The third is about building a culture of high performance throughout the entire schooling system.

Anytime Anywhere Learning For All

The first principle in transforming schooling is to redefine its “customer” base. At present, schooling reaches learners between the ages of 5 to 18, within narrowly defined geographic boundaries, and for around 18% of the year only. Now, there is a significant opportunity to deliver learning services to entire populations at relatively low costs. This is because the cost of digital content and software only marginally increases with the number of users, and because the cost of delivering e-learning services at massive scale through Cloud computing is increasingly cheap and getting cheaper.

To date we have thought about learning in the physical sense of going to a place called a school. Going forward, schools will facilitate learning less as a physical experience and more as one that can take place across different locations. Increasingly, we can expect the process of schooling to become less dependent on learners regularly attending a single campus over a long period of time.

Schooling will spread out of the physical confines of the school campus, and into ‘found space’ such as offices; high street locations; apartments; and even the homes of children.

The youngest learners need somewhere near their own home where they can physically go to access learning facilities; to learn with other groups of learners and access richer materials than those which they have in their own home. Older learners need learning spaces to interact with their tutors, counsellors and learning managers, but also need to learn in environments that are appropriate to their learning tasks. For example, a specialist science learning module – say optics, for example – may well be based in a traditional (campus) school laboratory, but equally there could be a company in the local community specialising in optics that would be willing for students to learn at their facilities.

In this model, there is still room for the traditional “Campus School”, but as a social, intellectual and resource hub – a place for those specialist learning facilities which might not be available in the local community such as laboratories, workshops, libraries, art studios and gymnasia. The Campus School is also a place from which to organise and manage learning and produce learning content.

The Campus School of the future will be a community resource; it will be open for 52 weeks a year, 7 days a week from 7.30 am (with breakfast clubs, computer clubs, gym facilities etc.), and will stay open until 10.00 pm (with after school clubs, homework clubs, sports facilities, cyber cafes etc). Its pupils will be aged 1 to 100. The four walls of a classroom/school will be replaced with online classrooms/schools/homes, ensuring access to technology and information for all.

Many university towns reflect this approach, where university learning facilities are embedded in the local community. Schooling is catching up. In “First Steps” we’ve already seen the ‘Kiosk’ model in India, where learning is simply put out onto the street to be consumed by self-organising groups of children. On the other side of the world, in New Zealand, Discovery Learning has schooling facilities deeply embedded in the community with locations in shopping malls and central business districts. Here, “school” isn’t a building and children are given “trust licences” to learn where they need to in the local community.

In this model, there is a vast spectrum of types of learning spaces, from traditional classrooms to cyber cafes, each type able to facilitate different levels of collaboration and self-directed learning.

Learning Spaces (C/O lookred)

New types of learning spaces will facilitate a much wider spectrum of learning methods too:

Technology Enabled Learning Styles. C/O lookred

Where Is School?

“Anytime Anywhere Learning for All” means exactly that. Every citizen, anywhere, able to access organised learning.  Not everyone will need to, or be able to, attend school in order to receive schooling services, which poses the question “where is school?” In the transformed schooling model, schooling is embedded deeply into the local community in the following way.

Anytime Anywhere Learning for All

1. Community Learning Spaces

Community Learning Spaces are places in which formal, organised schooling takes place for school age learners, that are not within the walls of the traditional Campus School. These spaces are, in effect, “franchises” of the Campus School, and firmly embedded into the Campus School’s systems. Learners in Community Learning Spaces have managed internet access, and plug their personal learning devices straight into e-Learning Service. Even the youngest children can learn with ICT – e.g. games based learning, immersive environments, interactive whiteboards and programmable toys. Learning to write with a Tablet PC helps young children to acquire basic skills long before they can type or use a mouse.

Learners are registered as members of the Connected Learning Community and the process of data collection begins. Managed learning pathways and dynamic timetables ensure that students work on the tasks that are most appropriate for their stage of learning. A spectrum of creativity, productivity and learning tools ensure that the optimal blend of computer and teacher mediated learning takes place. The ICT infrastructure comprises wireless network, workstations, display, scanners. Infrastructure and Core Sofware Services mean that computers joining the wireless network are managed via a Virtual Private Network. Users and devices are authenticated, and policies – especially security and filtering policies – are imposed.

Teachers, assistants and other responsible adults – connected to peers and experts through the technology – directly support the learning process. Learners progress through the curriculum as quickly as their learning performance permits, and move to different learning spaces when appropriate. Staff and learners alike access the Connected Learning Community portal to get information, content and tools. Learners can see their assignments, feedback, learning materials and web links from a single site, and populate an e-portfolio with their work. Community Learning Spaces are extensions of
the Campus School, and both staff and learners will spend some time at there.

2. Campus School

The Campus School acts as a central point for organising, managing and creating Anytime Anywhere Learning in the community. The Campus School in effect “franchises” learning operations in Community Learning Spaces, so ICT is used to drive alignment; manage performance; and ensure high quality, paperless administrative processes. Live communications ensure that expertise within and beyond the Campus School can be “piped” into the Community Learning Spaces (CLS) on demand.

The IT Infrastructure of the CLSs are supplied as a service from the Campus School.

Learners – of all ages – visit the Campus School to use specialist facilities and IT equipment that are unavailable in the Community Learning Spaces. Whilst learners bring their personal learning devices into the campus, the site has a proliferation of multi-touch interactive displays and these enable learners to access a vast array of information and content from anywhere on the site.

In the Schooling Enterprise Architecture model, Campus Schools are branch sites from the Local Education Authority hubs and as such receive the full range of Schooling Enterprise Services for Student Relationship Management, intelligent intervention, performance management, planning, operations and administration.

A master database of resources – people, spaces, equipment and content – enables the Campus School to dynamically timetable learners so their precise learning needs can be met immediately. Predictive analysis of learning pathways enables the system to book or purchase resources well in advance.

Underpinning the IT infrastructure at the school and its “franchises” is a set of Core Software Services including Security, Identity, Comms & Collab, System Management and Directory services. Services are either delivered through on-premises servers or relayed from data centres, private and public clouds “upstream” at LEA and/or MoE levels.

3. Local Education Authority

As a Hub in the Schooling Enterprise Architecture, the Local Education Authority’s main role is to deliver Schooling Enterprise Services to Campus Schools. Their managerial functions, facilitated by ICT, are to drive accountability, alignment and performance.

Another key role is to run large scale access programmes. Using aggregated buying power and regional connections the LEA is in an ideal position to acquire devices, infrastructure components and support for the best price-to-quality ratio. As a Hub for the MoE, LEAs should be able to ‘enforce’ MoE mandates on standards, quality and Service Level Agreements.

The LEA can also be an aggregation point for data held on children by different authorities – health, social care, the police and education – to be aggregated to give a secure ‘big picture’ on children,
particularly those who may be at risk.

4. Workplace

Anytime anywhere learning for all means delivering learning experiences to all, including those in work. Online vocational courses are available through the Connected Learning Community portal. Workplaces offer valuable learning opportunities to learners of all ages, especially where specialised equipment is beyond the financial reach of the Campus School. The workplace can also be used to house Community Learning Spaces. Being part of the Connected Learning Community Portal; local businesses can have direct dialogue with – and receive relevant learning services from – their local Campus School, FE College and University to better meet the learning needs of their organisations.

5. University

Universities offer a rich extension to the Campus School learning community by offering online access to lectures, experts and learning resources. Within the Anytime anywhere learning model, Higher Education is made available to students who are ready to take learning modules offered by the University – virtually or otherwise.

6. Off-Site Learning Environments

With community-wide Wi-Fi coverage, homes, cyber cafés, hospitals, and recreation areas can all be turned into learning environments.

Personalised Learning

Transformed schooling organises the learning around the individual, not the other way around.

Learning, by definition, is personal—no one else can learn for you. People learn different things at different speeds and in different ways. When students walk into a learning space, they bring very different sets of attributes, abilities, knowledge, skills, understandings and attitudes with them.

Over recent years, the concept of personalising learning has gained considerable ground.

From a technical perspective, personalising learning is about:

  • Delivering an extended range of opportunities to learn – individually and collaboratively
  • Delivering content that addresses precise learning needs
  • Managing learning pathways

Extending Opportunities to Learn

The wider and deeper the choice of content, the more personalised the learning experience can be. When providing learning to an entire community, the type of learning experience consumed will range from informal learning to structured and accredited courses.

Extended Learning Opportunities for All

With a wide and deep supply of learning content, learners can have a wide choice of learning experiences, modalities, pathways and assessments. For example, being able to pick from a menu of languages to learn is a more personalised experience than just having one to choose from. To be able to choose what level to study a language at – from beginner to advanced – again adds to the degree of personalisation.

Personalised learning is not about learning in isolation, however.  It is quite the opposite in, fact.  Learning is a social activity and personalising the learning experience is to do with providing opportunities to collaborate as well as to learn independently. A learning task that has been personalised for somebody could involve them working in a team, and part of the assessment could be how well they have managed to collaborate with other people. Therefore, another technical requirement here is to provide Communication and Collaboration tools – the more sophisticated these tools, the
greater the possible degree of personalisation.

Addressing Precise Learning Needs

Learners learn in completely different ways, and at different rates depending on prior knowledge and their learning styles. Therefore personalised learning systems need to deliver content so that different learning styles are addressed and different learning speeds are catered for. For example, in learning about the skeleton of dinosaurs, one learner might learn best by listening to a recording, another through looking at pictures, another by using a Tablet PC to kinaesthetically piece together the bones with a stylus.

From a technical point this means that content needs to be packaged so that learners can access it through multiple learning modes. Increasingly there will be automated agents that scour the internet and deliver content that precisely matches learning needs.

The relative length of time that it takes a learner to acquire the expected learning in each module shouldn’t matter as the e-learning services will adjust the personal learning pathway that the learner takes accordingly.

Managing Personal Learning Pathways

The extent to which a learning task has been personalised is a function of the extent to which that individual’s prior knowledge, skills, preferred learning styles, and attitudes have been taken into account when assigning the task.

In this model, learners are constantly assessed as they move through the learning programme, and the pathways that they take continuously evolve as they work their way through. This relies on feedback loops and systems which can dynamically adapt to the twists and turns of the learning process, and set challenging learning goals and tasks. This is essentially about using “business logic” which in turn uses data to decide what students need to learn next and manage the learning process.

Setting the learning task automatically is something that intelligent tutoring systems and learning management systems such as “Success Maker” have been doing for many years. However, if completing the learning task needs more than just a computer, managing the process dynamically becomes complicated.

This is where dynamic timetabling comes in. Dynamic timetabling starts with the premise that learning should be organised on a ‘performance’ as opposed to a ‘time’ basis (see Schooling at the Speed of Thought for more details). The core idea is that dynamic timetabling matches the optimal learning experience for a learner to the resources needed to deliver it. For example, if the learner has  mastered the concept of soil erosion in Geography, the next task may be to apply that learning in a practical experiment. This involves working with others who are at the same learning stage, using equipment, a physical space and teacher/assistant supervision. Ideally, the dynamic timetabling system will have predicted when these resources will be needed, organised them ahead of schedule and matched the learner to what they need to complete the next task.

Dynamic Timetabling

Today, this can be at least partially accomplished through resource scheduling within CRM.

Once the learning task is completed, a record of achievement builds in the learner’s e-portfolio.

Culture of Performance

In the Transformed Phase the entire schooling system is working at optimum efficiency and effectiveness – what Joey Fitts and Bruno Aziza (Driving Business Performance, 2008) call a “Culture of Performance”. To get to this stage schooling systems will have gone through the following stages:

  • First Steps: Increasing visibility
  • Enhanced: Moving beyond gut feel, and planning for success
  • Strategic: Executing on strategy

A culture of performance is goal orientated; results are measured and members of the Connected Learning Community are competitive in a constructive way. A culture of performance is
about transparency, predictability, and the ability to adapt to changing conditions. With capabilities to monitor, analyse, and plan, performance orientated organisations can create a culture where information is a prized asset, aligned execution is the norm, and accountability is embedded.

From a learner’s perspective, this is about friction-free administration regarding courses, options and assessments. It’s about micro payments, and cashless vending, and not having to repeatedly enter the same basic data for silo’d administrative processes. It’s also about the seamless escalations of issues – such as requests for special support.

From a teacher’s perspective this is about doing the lowest possible levels of administrative tasks, confident in the knowledge that the system is dealing with the administrative mechanics of running the schooling operations. For those administrative tasks that teacher have to do, reporting, administration, productivity and communication & collaboration tools ensure that the tasks are efficiently executed and add real value to the organisation.

Administrators and managers get the benefit of using processes that have been integrated. For example, when new staff join the organisation, background checks, basic data collection, terms and conditions, salary and on-boarding systems all work together as a single function, crossing organisational boundaries automatically. When strategy is set at the highest organisational level, this cascades down automatically into the objective setting process, ensuring organisational alignment. Performance management tools linked to in-depth data about learner performance ensure that teaching staff are rewarded fairly. Business intelligence is available to provide deep insights into operations to ensure that resources are being used to maximum effect.

Bringing it All Together

The key difference between a transformed schooling system and any of the other phases is the degree to which the entire system is architected around the student.

Learner at the Centre

The Transformed schooling system will integrate a spectrum of services and processes, many which would have been in silos before the transformation process, around the student. The result of this is that the student experiences a range of highly individualised services, delivered by a high performance, highly connected, lean, efficient and cost effective schooling system.

Getting to Transformed schooling is a long journey. In most countries there will be significant inertia from legacy systems. Paradoxically, one of the drivers for transformation is diminishing budgets. In the United States, for example, there is a strong surge towards anytime anywhere, personalised learning for all – delivered from outside the formal schooling system, driven by collapsing schooling budgets and widespread dissatisfaction with the current system.

Ultimately, the point of investing in transforming a schooling system is to get an order-of-magnitude improvement in return on education budget investment, and this cannot be done in isolation. The whole enterprise of transforming schooling needs to be organised within the framework of a Schooling Enterprise Architecture, as described in detail in Schooling at the Speed of Thought.

Schooling Enterprise Architecture

Focusing on the “IT Platform Architecture”, the Transformed phase has 5 interconnected layers:

Tranformed phase - five layer Schooling Enterprise Technology Architecture

And finally, across each layer are the following key technology levers:

Schooling Enterprise Technical Concept Architecture - Transformation Phase

This is the last in this series of articles on the phases through which schooling systems evolve, but watch this space for related articles. All comments, feedback, questions and suggestions for articles will be very welcomed.

Thanks to Matthew Woodruff and Chris Poole from lookred for contributions to this article.

The “Strategic” Phase

This is the third in a series of articles that aim to help schooling systems develop their technology, the first being “Taking the First Steps“ and the second, Taking the Next Steps – The ‘Enhanced’ Phase.

There are four distinct phases through which technology in schooling evolves. The first phase is characterized by access. In the next phase, technology is used to enhance existing processes. The third phase is characterized by using technology strategically. No longer is technology considered a “bolt-on”, or “veneer” on top of existing processes – it now helps drive schooling towards strategic goals such as significantly improved learning and better return on investments. In the final phase, leading edge schools use ICT to transform their operations, using it to personalize learning, integrate deeply with the wider community, run extremely efficient administration systems and develop a culture of performance.

‘Strategic’ Phase Vision

In the Strategic phase, technology becomes a key asset in achieving the strategic goals of an organisation. It’s about restructuring work and processes and doing things differently.

Typically in this phase, the strategic goals of an organisation would include raising standards and improving performance, and technology is a strategic tool for achieving these strategic goals by enabling:

  • Intelligent intervention – data driven support for learners
  • Connected Learning Communities – fully exploiting all available resources, and integration with the local community
  • Monitoring, analysis and planning – data driven decision making
Four phases of ICT implementation

Goals

Intelligent Intervention

This is essentially about using data to make well informed decisions about what students need to learn or do next. To fully personalise the learning experience students should be constantly assessed as they move through their schooling, and their learning pathways should continuously evolve. This relies on highly effective feedback loops and systems which dynamically adapts to the twists and turns of the learning process, and sets challenging learning goals and tasks. This is extremely difficult to do within a paper-based setup, but can be made a lot easier through using IT systems that provide analytic and workflow capabilities.  Intelligent tutoring systems, and managed learning environments, are becoming more commonplace and increasingly sophisticated.

Monitoring, Analysis and Planning

To manage an organisation strategically, as opposed to fighting fires, the ability to monitor performance, analyse results and plan for improvements is fundamental. Organisations wanting to manage strategically must have three key capabilities:

Monitoring

This capability provides managers with the ability to know “what is happening” and “what has happened.” Organisations implement dashboards, scorecards, or reports to monitor their performance. These visual applications allow managers to keep an eye on important indicators of their organisation’s health.

Analysis

This capability provides managers with the ability to know what is happening and why. To analyse performance, organisations implement solutions that are often very interactive in nature and allow managers to investigate the root cause of issues they see in their dashboards, scorecards, or reports.

Planning

This capability provides the organisation with the ability to model what should happen. Organisations develop processes and tools to conduct the essential planning, budgeting, and forecasting exercises. These processes allow managers to align groups and individuals around the metrics that drive the organisation—for instance: “what are our examination result targets?” or “what is our spending versus our revenue?”

Connected Learning Communities

Whilst there may be elements of learning that require independent work, learning only really acquires meaning in a social context, and the most immediate and direct social context for schooling is the local community.

ICT can be used to connect together all those who can make a contribution to students’ learning – e.g. local business, community resources (e.g. museums/libraries), parents and 3rd party learning services. It can connect students to inspiring individuals and inspirational speakers; promote debate and engagement between collaborators in face-to-face or virtual groupings; and provide mentoring opportunities. Connecting stakeholders together in a Connected Learning Community has enormous benefits such as engaging parents more deeply in the learning process, speeding-up processes and improving students’ connections with the outside world. The core of a connected learning community is a portal that can be accessed from anywhere.

Scenarios

Student Access

In the Strategic phase, students have continual access to their own learning devices. These devices need to enable a range of learning scenarios (not just content consumption), be rugged, easy to repair and support, manageable on a network.

Devices should be available to students so they can learn anytime anywhere, access content, learning management and communication and collaboration tools via the Connected Learning Community Portal.

Anytime Anywhere Learning = access to devices + learning services

Having access to their own devices enables students to experience a wide range of learning scenarios:

ICT enables a wide range of learning styles

Classroom

Classrooms need to accommodate an increasingly wide range of learning styles, and equipment needs to be laid out in quite different ways according to the demands of each different learning task, for example:

Different learning tasks require different floorplans

BECTA provided the following guidance to UK schools on different classroom layout options:

Pods – separate circular / hexagonal / octagonal benches with workstations
Hexagonal pods
Advantages
  • No corners with 2 computers, so no dead spots that cannot be used
  • No extra space required for 2 pupils to share a computer
  • Can support collaborative work as users working around ‘one pod’
Pods – squares with computers on two sides only
Square pods
Advantages
  • No corners with 2 computers, so no ‘dead spots’ that cannot be used
  • No extra space required for 2 pupils to share a computer
  • Can support collaborative work as users working around ‘one pod’
Bays built along walls
Bays
Advantages
  • Teacher can more or less see all computer screens from the centre of the room
  • Provides opportunity to use the centre of the room for tables enabling work away from the computer, and to gather groups for discussion
  • Cabling and electrical work is cheaper and easier than ‘pod’ designs as along the room edge.

School

In the Strategic phase, IT has become a strategic asset to schools. With the infrastructure optimised in the Enhanced phase, we now turn our focus on workloads delivered by servers.

The following services are core in the Strategic phase:

  • Optimised Infrastructure – including File and Print, Database Services, Directory Services, Security, Device Management, and Data Protection and Recovery
  • MIS – Management Information Systems
  • Portal
  • Unified Communication
  • Virtualisation – centralizing computing tasks to improve scalability and system performance

These, typically, will be delivered through three layers:

  • On-Premises – the school hosts key functions on their own servers
  • Data Centre/Private Cloud – the Local Education Authority (LEA) delivers services to schools from their servers
  • Public Cloud – the school receives services from the LEA, Ministry of Education and private suppliers from Public Cloud Services
School Server Infrastructure

Portal

The Strategic phase is characterised by the Connected Learning Community, the core of which is a portal that can be accessed from anywhere. For it to be effective it needs to be “role based” i.e. present users with information and tools relevant to their role and to them as individuals. In other words a teacher in the community sees the information relevant to all teachers, their fellow subject specialists, and also information specific to their particular group of students, their particular HR information, and their particular teaching content, tasks, calendar, e-mail etc.

A portal should give students, parents, managers, teachers, their own “spaces” and deliver to them the resources that are important individually to them through a single web page.  It aggregates information from diverse systems into one interface with a single sign-on ID – and organisation-wide search capabilities so that users can access relevant information quickly.  Teaching and administration staff can use the portal to distribute information to students based on their enrolment, classes, security group or other membership criteria, while enabling them to personalise the portal content and customise the layout to suit their needs.

A great Portal reference architecture is Twynham School. Twynham is a 1600+ Secondary school in Christchurch UK, built  a powerful collaboration platform – “Learning Gateway” – which allows students, staff and parents to work efficiently; develop independent and inter-dependence in their learning strategies; and support children in achieving their full potential. Twynham School won the BECTA ICT Excellence Award in 2008 for learning Beyond the Classroom and the schools works with over 400 schools internationally to support the development of their Learning Platforms.

Twynham School Portal Navigation bar

Mike Herrity at Twynham has published a detailed e-book explaining how the Learning Gateway is used: http://bit.ly/qJohiL

Microsoft have also published a full architectural guide explaining how Twynham built their Learning Gateway – http://bit.ly/qORAW5

Enabling many of the functions in the portal are 2 sub-systems – Content Management and Unified Communications & Collaboration.

Content Management Systems (CMS)

When ICT is fully implemented, vast amounts of content gets created.  In order to get maximum efficiencies from ICT, this content needs to be organised and managed in a way that means that people don’t replicate one another’s work.

A content management system in a connected learning community helps education institutions organise and facilitate the collaborative creation of documents and other content. They enable the full life cycle of content – from initial creation to delivery to end users.  CMS comprise document and records management, web content management, forms, search, library systems, curriculum frameworks, curriculum systems, curriculum exemplars and resource assemblers.

Unified Communications (UC) & Collaboration

Today it is typical that people will have multiple contact addresses – direct line phone number; mobile phone number;  e-mail; Instant Messenger; home number; personal mobile number; home e-mail, etc. Unified Communications (UC) takes identity and presence and then has all of these other ways of interacting simply connect up to that.

A single integrated identity can simplify how you find and communicate with others.  One integrated desktop application can provide easy access to all the ways users are likely to want to communicate.  Another key advantage to UC is that in using Voice over IP (VOIP) for telephone calls, it has the potential to significantly reduce communication costs.

UC enables students, teachers, parents and other stakeholders to confer and consult in the way that suits their work style by switching seamlessly between videoconferencing, telephone, email and instant messaging.

Also within UC are task and calendaring functions.

Data Driven Decision Making

In a schooling system, data driven decision making is supported by a huge number of information systems.  Any process that involves the creation and transmission of information can be considered an information system – even informal discussions.

The collective term for the information systems in schooling is Management Information Systems (MIS).

Functions Supported by an MIS

The functions that a Management Information System need to support are:

Improving Student Performance Progression Management
Learning Management Intelligent Intervention
Parents Engagement In Learning Better Teaching Decisions
Make Better Management Decisions Monitor, Analyse and Plan
Tactical Decision Making Data Visualisation
Manage Resources More Effectively Planning and budgeting
Financial Control Asset Control
Reporting Accountability and Alignment
Performance and Assessment Data KPIs, Scorecards, Dashboards and Reports
Key Performance Indicators (KPIs) Drive Administrative Efficiencies
Planning Organising
Controlling Co-ordinating
Management Information Systems – Functional Architecture

In this context, an information system really means an organised hierarchy of information sub-systems. Management Information System (MIS) is a term used as a container for all of the electronic information systems within a schooling system.  These systems vary in size, scope and capability, from packages that are implemented in relatively small organisations to cover student records alone, to enterprise-wide solutions that aim to cover most aspects of running large multi-site organisations.

A MIS includes the following sub-systems:

  • Decision Support Systems (DSS)
    • Finance
    • Performance Management
    • HR
    • Student Relationship Management (SRM)
    • Enterprise Resource Planning (ERP)
    • Analytics and Business Intelligence (BI)
    • Timetabling
  • Student Information Systems (SIS)
    • Integrated Student Record
    • Electronic grade book
    • Attendance Management
    • Automated workflows
    • E-Forms
  • Learning Platform
    • Learning Management Systems (LMS)
    • Managed Learning Environment (MLE)
    • Virtual Learning Environments (VLE)
    • Content Management Systems (CMS)

For a full description, see Schooling at the Speed of Thought, Chapter 6, Managing Information.

Local Education Authority

In the Strategic Phase, the goal of service provision at Local Education Authority level is to deliver those services which when aggregated improve in quality and price.

Local Education Authorities can use their scale to negotiate the best prices for content, communication, support services etc. Many of the services requiring the most maintenance and management – e.g. learning services, system management, business intelligence, and administrative tasks such as payroll and HR, are delivered more cost effectively from a centralised point.  Other benefits include the use of greater amounts of data for decision making – an LEA with data from many schools can perceive more patterns than a single school with its limited pool of data.

Many LEA services are delivered through data centres built on top of optimised infrastructures. Increasingly data centres will become Private Clouds – essentially Infrastructure as a Service (IaaS) within the data centre. The large scale and pay-as-you-go economics of Public Clouds aren’t available in typical Private Clouds. However, Private Clouds offer at least some of the scalability and elasticity benefits of Public Cloud but with additional control and customisation. Increasingly many of these services will be also be delivered from Public Clouds.

The services delivered by the LEA can be split into two main categories:

  • Schooling Enterprise Services
    • Monitoring, Analysis and Planning
    • Intelligent Intervention
    • Student Relationship Management
    • Administrative Processes
    • Operations
  • E-Learning Services
Local Education Authority Schooling Enterprise Architecture (SEA)

Ministry of Education

Some of the Schooling Enterprise Services delivered by LEAs to their schools and communities could be provided at National level from the Central Ministry of Education. Services such as strategy, policy, budgets, and curriculum are usually set and delegated at national level.

Computing functions at Ministry of Education level can be grouped into three main categories:

  • Internal departments – Curriculum, Policy, Research etc.
  • Regional Services – Resources and BI
  • National Services – Content (information services) and infrastructure – e.g. national level schooling enterprise internet backbone
Ministry of Education perspective

One of the most important functions at Ministry level is to have a “clear line of sight” of the performance of the schooling system. This enables BI analysis and for resources to then be focussed on the areas where they will have most impact.

Fitts and Aziza (Joey Fitts and Bruno Aziza, 2008) talk of a “line of sight” from strategic to operational to tactical decisions as the discipline that drives aligned execution. “Line of sight” means clear visibility of goals, and progress towards them at executive (strategic), management (operational), employees (tactical) levels.

“Clear line of sight” is about performance metric alignment across organisational layers. This can be thought of as an organisation chart for performance metrics, indicating how the various levels of the organisation’s performance metrics relate to one another. At school level, classroom teacher’s metrics roll up to their Head of Department, which in turn roll up to Deputy Principals, which in turn roll up to the Principal. In turn, and depending on the mode of operations, performance metrics for Principals should roll up to those of Local Authority Directors, which in turn finally roll up to the Ministry of Education.

Clear Line of Sight enables strategic allignment

Technology Building Blocks

Finally, pulling these building blocks together we get the following high level architecture:

Technology Building Blocks for Strategic Phase

Conclusion

Moving from the Enhanced Phase to the Strategic Phase is as much about management as ICT. In this phase, the technology is used a tool for getting better allignement between strategy set at MoE level to exectution at school level. At all levels, there are strategic decisions that ICT can help monitor, analyse, plan and execute.

In the next article in this series, we will explore the final phase – Transformation.

Taking the Next Steps – the “Enhanced” Phase

This is the second in a series of articles that aim to help schooling systems develop their technology, the first being “Taking the First Steps“.

There are four distinct phases through which technology in schooling evolves. The first phase is characterized by access. In this phase, giving students and teachers access to computers to improve some aspects of lesson delivery and administration is the main focus. In the next phase, technology is used to enhance existing processes. It’s about providing content and tools to increase learning, organising communications and starting to manage data and information. The third phase is characterized by using technology strategically. No longer is technology considered a “bolt-on”, or “veneer” on top of existing processes – it now helps drive schooling towards strategic goals such as significantly improved learning and better return on investments. In the final phase, leading edge schools use ICT to transform their operations, using it to personalize learning, integrate deeply with the wider community, run extremely efficient administration systems and develop a culture of performance.

Four phases of ICT development in schooling

The “Enhanced” Phase

Goals

The goals of the Enhance Phase of ICT development are to:

  • Increase learning
  • Improve communications with parents
  • Manage data and information

Increasing Learning

In this phase, computers are available in several areas of the school, some in labs, and others scattered in classrooms and other learning spaces. These computers are connected together in a network and key resources, such as content, printers, scanners, and users are managed centrally.

Students use computers as a learning tool – e.g., using multimedia learning packages; solving maths problems; researching; reading from e-books; developing writing skills; learning languages; and developing 21st Century skills.

Curriculum Area Examples

Language
Hyperlinks allow more creativity in narrative construction
  • Word structure and spelling
    • A great example of how to help children remember how to spell individual words is the “Look Cover Write and Check” web application on the Ambleside School site   
  • Composing and presenting
  • Learning foreign languages
    • Bilingual audio books combine rich graphics with spoken word for foreign language learning. Award winning Mantra Lingua have combined traditional print media with a “talking pen”.    
Mathematics
Making visualisations easy in Mathematics
  • Learning from feedback
    • Word processing software now enables students to “word process” maths to clearly show complex formulae, along with 2d and 3d graphs, making it easier to communicate their thinking and get feedback on it. Check out the free Math add-in for Word and OneNote.
  • Creating patterns
    • Students can use Logo software to draw patterns students quickly learn the importance of expressing their commands unambiguously and in the correct order
  •  Seeing connections
    • A software Graphing Calculator can be a great tool for teaching maths when used with a data projector for whole class teaching, or better still when given to students to use.  A lesson can be built up and stored then each stage “replayed”. Check out the free Microsoft Math 4.0 
  • Exploring data
    • Students can design surveys, such as the heights of their peers and teachers, and enter the data into a spreadsheet to learn about averages and correlations.
Science
 
  • Assisting observation
    • Electronic telescopes enable pupils to collect images from different locations on Earth and at different times of the day. Telescope sites also provide learning resources and galleries of images.  
  • Recording and measuring
    • USB microscopes and data loggers can be used in the classroom to observe, record results, plot graphs and analyse data. E.g. see this data logging programme from Kent which explores topics such as: most effective sunglasses; which surface will slow down the car? Who has the hottest hands; where is the noisiest place in school?
  • Providing models or demonstrations
    • Simulating experiments can enable students to experiment with phenomena that may be too slow, too fast, too dangerous or too expensive to experience in school. Check out Crocodile Clips’ Yenka for example.

An essential consideration is accessibility for all. For students with some disabilities, technology can open up new windows of learning opportunities. For a full explanation go to: http://edutechassociates.net/2011/03/08/accessibility/

A fantastic resource exploring different ways in which ICT can be used across the curriculum can be found here: http://archive.naace.co.uk/direct2u/indexbysubject.html

Additionally, worksheets with practical examples and screenshots explaining how to use ICT in Primary Schools are available here

Other resources developed for classroom use by teachers, for teachers can be found in the Teachers Toolbox and here.   

Managing Learning Content

When ICT is implemented, lots of content gets created.  In order to get maximum efficiencies from ICT, this content needs to be organised and managed in a way that means that people don’t replicate one another’s work.

At school level, content can be managed through a file sharing system on a server on a network. For example, Windows Server 2008 enables files to be centrally shared and managed. The “Shared Folders” feature enables file-shares to be created and permissions set, which will allow students and teachers to store their work.

At a more advanced level, content can be better managed using a portal such as SharePoint Server 2010. Combining content management with collaboration tools and powerful search, SharePoint makes information easy to find, share, and use.

Beyond the school, regions or even whole countries are beginning to provide organised learning content, as explored in the articles on SULINET and managing learning content.

In Brazil, for example, Educopedia is a learning content portal run by the City of Rio. Users are presented with a list of all of the elementary and middle school grades and under each of these they can access all the school curricula for each discipline.

Educopedia - learning content access made easy

For example, a teacher can click on a subject area link, and see a content index consisting of the school year course plan which contains the lessons and related curriculum standards.

Educopedia - making it easy to select resources related to curriculum standards

From there, they can download lesson plans with suggestions on how to make the best use of the resource materials available; a list of the skills and competences addressed; a PowerPoint presentation for classroom use; and a quiz with questions about the class content.

Educopedia - access to learning tools made easy

Educopedia also provides users with communication and collaboration functions through live@edu, which provides a mechanism for user authentication.

Parent Connection

The usual way in which schools communicate directly with parents is via “parent evenings” – many parents end up seeing a teacher once or twice a year for 5 minutes. Hardly enough time to say “hello” and “goodbye”. 

Research demonstrates that active parental involvement in educational activities delivers a positive impact on attainment. Technology can be used to connect parents with information regarding the educational progress of their child, and a range of supplemental activities in which the parent can support the learning process. For example, ICT can be used to:

  • Enable parents and teachers to communicate more frequently with each other
  • Identify problems and issues at an early stage and involve parents in rectifying them
  • Give parents the tools to support learning activities at home
  • Provide parents with immediate news about the school and its activities.

At a basic level, ICT can contribute:

  • E-mail news bulletins
  • Digital learning resources to assist the student with homework
  • Educational resources for parents, such as behavioural management guidance
  • Alerts on critical issues such as lack of attendance, dropping attainment levels, behavioural issues, etc
Miami Dade - enabling parents to see how their children are progressing and help with work at home
Miami Dade - essential information about children's school day made easily accessible
Managing Data and Information

Teacher Administrative Tasks

ICT can really help with reducing the time spent on teacher’s basic administrative tasks including:

  • Lesson plans and materials
  • Producing class lists
  • Keeping and filing records
  • Analyses of attendance and results
  • Writing reports
  • Ordering supplies and equipment.
  • Producing formal minutes of meetings
  • Submitting bids 

In Latvia, the Ministry of Education were able to achieve time savings of 30% by deploying SharePoint Server across 100 schools. This allowed them to automate routine grading tasks and reporting, delivering significant time savings for teachers. 

For a report on how ICT helped UK teachers reduce administrative burdens, click here.

Managing Baseline Administrative Data and Information

Whilst different countries have different mandatory requirements for essential data that they expect schools provide, UNESCO (2003) has set out a recommended specification of essential data to collect at the national level from each education establishment.

Data on students Data on teachers and other categories of personnel
Distribution by grade, gender and age Distribution of teachers by level of qualification and certification, by grade and by gender
Distribution of repeaters by gender and grade Distribution of teachers by age and by gender
Number of learners attending double-shift classes by grade. Number of teachers working double shifts
Data on education establishments Number of teachers in multi-grade classes
Number of classrooms Number of non-teaching personnel by categories, age and gender.
Places available in schools Distribution of teachers by level of qualification and certification, by grade and by gender
Education expenditures Distribution of teachers by age and by gender
The budget as part of the overall State budget (budget voted and budget disbursed) broken down by level Number of teachers working double shifts
The expenditures at the local level, of private organizations by level Number of teachers in multi-grade classes

Student Information Systems (SIS)

Schools need to keep records on their students which should, at the very least, include: 

  • Personal – name; address; photo; family contacts
  • Performance – actual and predicted grades; teachers comments
  • Attendance – by day, by lesson, over time
  • Risk profile – learning, social, medical and demographic
  • Intervention history – what assistance and guidance has been given to the student
  • Timetable

Scenarios

Student Access

Providing students with their own laptops for use at home has proven learning impact

A study by the UK Institute of Fiscal Studies in 2009, shows that “learners who use a computer at home for schoolwork could get as much as ½ a grade to their General Certificate of Secondary Education (GCSE) examination results and as much as a term on to their GCSE learning”. No surprise then to see the explosion of national level projects for the wide-scale introduction of ‘personal learning devices’. However, many of these schemes wrongly focus on a ‘blanket’ approach of providing huge numbers of cheap portable PC’s. Unfortunately most of these projects have been driven by getting the most computers for the lowest price, rather than focusing on getting the right device for the learning that needs to be done.

To get the best return on investment a device for students should have the following features:

  • Provide a platform for use of the widest range of productivity, creativity, and communication and collaboration tools
  • Result in users acquiring relevant knowledge and employability skills  
  • Have a display of around 13 to 15 inches
  • Have software that makes learning accessible to all, including those with disabilities
  • Capable of being managed remotely and as part of a managed network
  • Sharable with other users  
  • Battery life should exceed 3 hours under full CPU load with full screen brightness
  • Appropriate ports to allow them to connect to other equipment
  • ·Wireless networking capability
  • Be self-contained and work without needing high levels of internet access once set up
  • Protected from viruses, spyware, and other malicious software
  • Hard Drive encryption for security

One of the advantages of giving students a PC – as opposed to lower specification devices – is that they can share them with family and friends, amplifying the effects of the investment. For example, Mouse Mischief enables students to share applications extending the use of the device.

Classroom

Ideally, students will be able to bring their laptops into the school and make use of them within a managed network, but this takes time, so a more likely scenario in the Enhanced phase is that students use shared computer resources at school. In this phase, there is likely to be an ICT suite with enough computers to take at least 30 children sharing a computer in pairs. Computers will also be found in other learning spaces in the school to support the kind of learning scenarios mentioned above. The computers that were originally used in the school can now be distributed throughout the school, some of which can be used as Thin Clients networked to the Server and/or Windows Multipoint Server.

Of course, computers aren’t the only hardware devices used in the classroom. Digital cameras; video cameras; voting devices; interactive whiteboard tools; robotic kits; digital microscopes; and projectors all have a role to play in the learning process in the Enhanced phase.

School

With ICT across the school, there is need for an organised network to manage ICT services. Learning content, devices, peripherals, access, administrative processes and users. Connecting with a local authority, state or national level learning content service is crucial, and this has to take place within a secured environment. The school will also need to connect to secure Local Authority services within a Wide Area Network.

An important question in this phase is how to manage e-mail. This can be done “on-premises” using server software such as Exchange Server; as a ‘rented’ service such as Exchange Online; or as a free “commodity” type service such as Office 365 for Education. The answer depends on the amount of resource available to manage the service, and the degree of control that a school wants to have over e-mail policy. Increasingly email – along with services such as calendaring and personal file storage – are commodity services that institutions are happy to see moving into the Cloud.

School managed network conceptual design

For a useful document from BECTA that sets out key considerations for school ICT network design, click here.

 Another useful document that considers the full range of devices that a school in the Enhanced phase could use is the Computer Sustainability Toolkit.

Local Authority – MoE

With a system in place for collecting baseline administrative data, there now needs to be a continuous flow of information between schools, the Local Authority and Ministry of Education with budget allocations flowing downwards and reporting on performance flowing upwards. This has to be achieved through a Wide Area Network to ensure the secure transfer of data. Several technologies are available for this including “Leased Line”, “Circuit Switching”, “Packet Switching” and “Virtual Private Networks”.

Wide Area Network between school and "upstream" authorities

As we saw above, the Local Education Authority of Rio City also provides learning content and collaboration services to schools. These can be delivered as a web service from a data centre.

Technical Requirements

The foundation on which the entire schooling architecture is built is called “Optimised Infrastructure”. This provides a scalable, secure platform which can be built on to provide a growing number of services.

Key capabilities of an Optimised Infrastructure are:

Security

The key component without which none of this will work is stringent security and networking protocols. This is needed to protect students and employees from unauthorised users, viruses and unsuitable content. Security systems should automatically identify threats and respond automatically.

Local Area Network (LAN)

Computers need to be connected to a LAN – wired and/or wireless – with a server that controls the network, stores files and enables printing. A classroom might have just a few computers that all the students take turns using, so it’s important that an educational computer be configured just the way the teacher wants.  The teacher shouldn’t have to waste valuable teaching time troubleshooting.  Each PC in a LAN needs to be “locked down” and reset easily. 

Data Protection and Recovery

As ICT becomes increasingly “mission critical”, it’s important to manage data so it can be rapidly recovered.  When infrastructure is fully optimised, recovering information should be as simple as browsing the network. Backup devices are now very cheap to buy and manage, and will automatically run in the background.

Identity and Access management

Identity and Access Management can help organisations centrally manage user information and access rights. It allows administrators to manage each student, teacher, administrator individually by setting their role, access and functional level.  This enables individual users to have information and software tools that are specific to their individual requirements – a personalised IT service.  A directory service holds each user account and its access functions and allows the user to access various systems using the same set of credentials. Authentication can be by various mechanisms such as logon credentials, smartcards, and biometrics.

Desktop, Server and Device management

In an optimised infrastructure, those responsible for the management of networks have the tools to control their IT infrastructure; easing operations; reducing troubleshooting time; controlling quota; password re-setting; provisioning users; improving planning capabilities; and managing mobile devices.   

Integration and Interoperability

A key goal of optimising infrastructure is to integrate different systems so they can exchange data. The advantage of this is that data only has to be inputted once, and then used by multiple systems saving time and money.  Ideally data in Student Information Systems, Teacher Administration and Accounting Packages will interoperate, saving teachers and administration staff from having to re-key in data every time they wanted to update records or produce reports. 

Database Services

Databases are the “engines” of information management. They are used to capture, store, analyse and interpret a wide variety of information, and deliver this information to a range of different applications and devices including servers, desktops and mobile systems. Data includes text, numbers, pictures, video streams, audio content, and geo-spatial information. Not only do databases store data but they interpret, index and enable it to be searched.  

Technical Support

Schooling system networks need to be reliable to encourage user confidence and to support learning and teaching, as well as school management and administration.  This requires access to technical support, which can come from technicians within the school, or from another provider, or sometimes from students themselves. In an optimised infrastructure, schooling systems need to move away from a reactive system in which incidents are dealt with only as they arise. Instead they need to create a more pro-active system where technical support prevents problems occurring and ensures that individual ICT systems are robust and reliable and available when required.

Architecture

Bringing all this together the overall architectural model for a school in the “Enhanced” phase looks like this:  

Schooling Technical Architecture - essential building blocks

Conclusion

It’s often harder to take the second step than the first. Indeed, moving from PCs in a single location to an integrated and managed network has many challenges. The advantages well outweigh the challenges because by developing the school’s technology in this way, students gain access to a wider range of learning opportunities, develop more skills and knowledge. Teachers can use ICT to engage better with students and their parents, and school administration can improve enabling more effective use of resources.

In the next article in this series, we will explore the next phase – moving from using ICT to enhance existing operations to using ICT to drive strategic change.   

Taking the First Steps

Year-on-year $64bn is spent on ICT for schooling, but many schools around the world have yet to take their first steps to introducing ICT. Whilst the most advanced schools in the world can take full advantage of ICT, large tracts of the planet still don’t have grid electricity.

Figure 1. Huge areas of the world have no electricity, leave alone Internet and ICT

In 2007, the number of people with PCs passed the one billion mark – still a relatively small portion of the overall world population. The digital divide is still a defining characteristic of our age, and introducing ICT into schools is one way that governments are attempting to tackle this.

When technology is first introduced into schools, it tends to be used to supplement existing operations and processes. Schools begin to see the potential for ICT but operate in a typical “factory” approach with most learning, teaching and operational activities based on paper and students “receiving” their learning from their teachers. Typically it starts with teachers using a single computer with a projector, merely enhancing traditional teaching methods. The focus of computer use is to develop basic skills and students take turns to use the computers in computer labs.

Figure 2. Throughout the world, “computer labs” are considered an important first step

Challenges

Whilst OLPC was commendable for a number of reasons, the programme has proved that there is a lot more to introducing ICT into schools than simply “dumping” large numbers of laptops into the system. A recent study highlighted the kinds of challenges that need to be addressed in order to take full advantage of ICT in challenging areas.

“What happens when a school located 40km from the nearest town is suddenly burdened with the impossible task of providing power to 300 OLPC laptops?”. One school visited on the study, had only one low-voltage outlet located in the principal’s office… Many off-the-grid schools will not have Internet access either”.

A large scale ICT roll-out assumes high quality administrative processes, but this isn’t always available either – many countries still don’t keep central records of what schools are where, or how many students attended which schools. In some schools, teachers are even held personally responsible for any losses or damages, leading to lack of deployment. Finding trained technicians, familiar with local infrastructure and technology who can install and maintain ICT is often difficult too.

After a deployment of nearly half a million laptops to Peru’s poorest schoolchildren, most children didn’t even bring the devices home. In Peru’s roll-out, children were held responsible for reimbursing the school for any damages, many of which could easily occur during long treks or drives in mountainous terrain. Parents of these children soon asked their children to use the laptops as little as possible, rather than risking losing an entire year’s salary paying for broken devices. Another problem in Peru was lack of literacy. “A large majority of the kids have no idea where keys are located and sometimes don’t even know the letters.” For ICT to be useful, software and keyboards need to be in the local native language.

According to the same study, “the vast majority of teachers only care about one program: PowerPoint. Without training and incentives, the use laptops in the classroom just reinforce old techniques”.

Figure 3. Often ICT introduction will just enhance old techniques

Schools often deploy their first computing equipment for up to 10 years. This means that multiple generations of software need to run on single instances of hardware deployments. Computer technology must therefore be able to handle old content as well as new content – including curriculum materials, multimedia content, as well learning software titles.  Running all that content on a PC is a key challenge. Combine these issues with the various support challenges associated with ageing PC hardware and the result is an environment where the challenges seem to outweigh the benefits.

Schools taking the first steps towards ICT usgage tend to be price sensitive and because of this, cheap devices are widespread and common, e.g. refurbished computers >5 years old. In some cases low cost hardware designed specifically for schooling use processors and other key components that are roughly 5 years behind a new mid-range device.

Power, internet, and air quality are all factors in the deployment of technology solutions into schools. PCs and devices have to ‘just work’ in the face of highly variable power sources – often going down for hours and then spiking up to 10X the voltage levels upon resumption. In addition, internet connectivity to schools may be non-existent or at best highly variable – maybe Dial-up speeds, and only for certain hours a day, week, or month. In addition, internet connectivity could arrive in a non-uniform way such as over a satellite downlink, a DVD update, or an offline cache of static internet content. Air quality can be highly variable also, which in computing terms means there might be significant dust, sand, salt, and moisture build up which can affect a device’s longevity if not properly designed for.

Technical Requirements

Technology for schooling in challenging environments needs to have two key characteristics:

  • Resiliency. Uninterruptable power supply and surge protection are good places to start. At the beginning of a school day all the computers in the school need to start from a last known good state. When a problem arises, logical choices and low-risk options need to be presented to the user.
  • Adaptability. A key requirement is that when the school wants to connect a new client device it should easily detect it on the school network and provide the client with access to all appropriate network services (file storage, printer access, Internet access, etc.). When a school wants to connect an LCD projector, the appliance should recognize and pre-configure this device so that it is truly plug-and-play without the user having to know what resolution it should be set at or the make or model number.  If a school has a lab with ageing PC hardware and software the option to turn that PC into a thin client will help to extend the value of the school’s existing investment and limit exposure to future technical frustrations of dealing with older configurations. As new form factors emerge, it should be easy for them to be assimilated into the school network.

Students need straightforward user experiences such as easy storage and access of their files, and straightforward ways to log-in and store and retrieve their work. Even at the most basic levels, students like to personalise their PC experience to create a greater sense of ownership.

Teachers are focused on achieving a teaching objective and have little time for experiment and discovery. They need tools that require little training to understand and use, and resilient devices that when support is required it can be applied with “one-click” – e.g. easy restore, reset student PC, etc.

ICT decision makers at municipality, state or country level will want to be able to show an impact on learning outcomes – ideally during their term in office – from their investments in ICT. They will want to be able to increase economic opportunity by increasing academic achievement, building ICT skills and enabling access to online information to “bridge the digital divide”. Total cost of ownership will be a key factor in making these decisions.

Adoption of technology will not happen at scale anywhere without local suppliers, system builders, system integrators (SIs) and independent software vendors (ISVs). In rural towns and villages, these are likely to be “small shops” and may be responsible for a full 360 degree service – deploying, training and supporting the school. Suppliers need systems that don’t require extensive additional training to sell, customise and deploy. Flexibility for what devices can connect to network allows local system builders to offer “system + devices” packages.

Scenarios

Kiosk

In 1999, Sugata Mitra installed a computer connected to the Internet in a wall in a slum area in India and found that children below age 13 learned to use and surf the Internet without even knowing English. They taught themselves to use the mouse, learned many games and programs like Microsoft Paint, searched Hindi Web sites, and even removed viruses from files. Many were completely illiterate and could not understand word patterns or pronunciation; others had reading problems and low test scores in schools. Nevertheless, they could “read” the names of applications and explain their functions, even when their position on the screen was changed. They also learned many English words heard from the computer’s speakers. Children found solutions in groups and taught each other.

This kind of computer needs to be in a safe public place that the children associate with safety, free time, and play. Children in the “Hole in the Wall” project self-organise their learning. They develop computer literacy, Maths and English skills, improve their social values and get better at collaborating.

These results are replicable in many different parts of the world where “Hole in the Wall” experiments have been carried out, and “learning stations” can be provided in countries like India at an all-in cost of around $0.03 per child per day.

Another study conducted in low-income and rural areas of India found that students who had free computer access at public kiosks performed better on science and math tests than students without such access – Inamdar, P. and Kulkarni, A. (2007).

Mobile Classrooms

In rural areas from Cyprus to Tunisia to India and even in the United States, busses and vans are frequently used to provide mobile ICT classroom facilities. For example, The Commonwealth Youth Programme Technology Empowerment Centre on Wheels (CYPTEC) enables students in villages in India to acquire ICT skills and become more employable. CYTPEC uses a van fitted with several desktop computers, mobile internet, and sound systems – all powered by a generator.

A typical mobile classroom will be equipped with the around 10 workstations, appropriate furniture, a server, physical and virtual security, broadband satellite/Wi-Fi/3G, audio-visual, videoconference equipment and off-grid power generation – and ensure that people with disabilities can use the facilities.

In a particularly innovative solution, the time used to take children back-and-fore to school in busses is used for learning. In rural Arkansas school buses shuttle some students for over two hours a day, so Hector School District has teamed up with Vanderbilt University to make the buses into “mobile classrooms”. One school bus has received mounted television screens that show math and science programs to students. Seats are equipped with headphones for the children to use.

A few years ago, literacy rates in the Western Cape in South Africa needed boosting. The Western Cape has 2000 schools, almost all of which are difficult to get to and many have no electricity. There are few teachers so teaching children to read and write is extremely difficult. The solution here is a mobile unit, a 4 wheel drive and a teacher trained to take children/adults through an intensive reading programme using voice recognition and basic literacy software on the laptops.

First School PCs

 

A good starting point for permanent ICT facilities in schools is a single PC in a shared space with a projector, screen and printer. A first step towards teachers exploiting the power of technology includes activities such as using a PC and printer to produce worksheets, and using the PC and a data projector to present learning content. Having soft copies of documents means that teachers are easily able to save and reuse resources, thereby saving time. In this model teachers have educational tools with immediate value, and this provides a foundation to grow the value of ICT investments. This scenario enables teacher-led activities using multimedia and educational content via an LCD projector where students are recipients of content (simulations, video clips, ppts, DVDs, etc.). Content can be delivered with or without access to the Internet through media-stored and cached Web-content.

Sharing applications is a good way to get maximum value from PCs. Using Mouse Mischief, approximately 5-25 students, each with his or her own mouse, can answer multiple choice questions or draw on a shared screen. Sample lessons can be found here.

In the first stages of implementing computers in schools, it’s critical that at least one computer is put to administrative use. This should be used for student and teacher records, funding, staff pay, course records, equipment inventory and operational purposes. Teacher’s time can be better used when replacing paper-based methods with electronic communication. Tasks such as basic record keeping, issuing standard letters and communications, and timetabling all become a lot easier when using ICT.

Computer Lab

 

Typically, a first step to providing classes of students with access will start with a “lab”. Decisions need to be made about arranging worktables, for example, U or L shapes allow group interaction. An “island” arrangement with two PCs on each side of a table works well and encourages students to share information. Students will typically use computers primarily for research – web, cached content, DVD – and productivity (e.g. word processing and spreadsheets). Computer labs need a server to enable:

  • File/print/back-up/restore
  • Teacher-driven classroom management & orchestration of client PCs
  • Labs to easily grow/upgrade with a range of different kinds of clients
  • Access to learning content

Making the computers available to the wider community when not being used by students has many benefits. A local pool of skills, knowledge and interest in ICT can be developed, and small charges for training can be made, helping to meet costs. To deliver this service to the community, schools need to provide secure access. PCs have high value, so physical and software security is also usually required – for example “Kensington® Locks”, burglar bars on windows, padlocked doors, biometrics, access controlled areas, storage units for laptops and other mobile technologies. Disablement and recovery security tools, and hard-disk encryption such as bit locker should also be used.

Building blocks

Electricity

In many parts of the world, the electricity supply to schools is a major issue, but there are a range of technologies that can address this. The main options for off-grid power solutions are solar power, diesel/biofuel generators, wind power, hydrogen fuel cell, moped and stove.

Figure 4. Solar panels in a school in South Africa

Of these, solar is an increasingly popular option, especially as the price of diesel fuel continues to rise, with companies such as Inveneo delivering solar based solutions. In a UNHCR deployment in a refugee camp, for which Microsoft provided the computing solution, electricity is provided through NAPS Universal Power Packs. One NAPS Power Pack provides power for an infrastructure module with server, printer, wireless router, and projector or teacher work station. Other NAPS Power Packs power 4 workstations, and these can be added to the network in groups.

No schooling system wants to waste electricity so several considerations need to be made:

  • Form factors matter. Even without adding a monitor, a typical desktop computer can consume at a minimum more than 3x the power that a laptop consumes. The extra electricity used by desktops tends to dissipate as heat, which in turn requires more power in the form of air conditioning to remove.
  • The age and price of the computer matter too. Typically cheaper and older desktop computers will consume more electricity than newer, better quality laptops.
  • The operating system. For example, Windows 7 was designed to be the most energy efficient operating system available and used in conjunction with the right hardware can deliver considerable savings, even on older hardware.

Internet Access

Figure 6. Wi-Fi in a school in South Africa

Where providing electricity is a challenge, providing Internet access can be even more so. For areas not able to get broadband/wired access, there are many Internet access solutions available, the key ones being:

Dial-up

This is one of the simplest and oldest forms of Internet access and uses a normal phone line to connect a computer to an Internet Service Provider. Its relatively inexpensive, and widely availability where phone lines are present, but it’s also the slowest form of access with a maximum speed of 56Kbps. Another problem is that in schools which have only one phone line, others cannot use the phone while the computer is connected to the Internet.

Cellular

Cellular-based access requires a cell phone network that offers 3G or CDMA 2000 data and voice services. A cellular modem is required to connect a computer or computer network to the Internet via a cell phone provider. Data services charge according to the length of time you are connected to the network and the amount of data transmitted and/or received. Access speeds range from 56Kbps to over 500Kbps. This speed depends on the type of service available, the strength of the cell signal, the distance from the nearest cell transceiver, and local physical environment factors. The advantage of cellular networks are that they are widely available, but relative costs and fluctuating speeds mean that it’s not the best option for always-on, shared access, and high volumes of data.

Satellite

Satellite access enables Internet access in rural and remote areas where copper wire and fibre based options are not available. This option requires installation of a satellite dish and receiver which is then connected to the Internet router. Speeds range from 64Kbps to 5Mbps uploading and 128Kbps to 11Mbps downloading. Because upload times are faster than download times, ‘latency’ (i.e. the time that it takes from mouse click to seeing content in the browser) is long. Satellite connections can also be affected by rain and dust storms. Whilst its available almost everywhere, a satellite link must be within the “line of sight” of transmitting satellites.

Wi-Fi, WiMax

These two forms of wireless Internet access are usually available in larger towns and cities. These can be used for the delivery of a service to a specific customer or to provide access across an entire city. Wi-Fi can provide “point-to-point” access to locations up to 30 Km away, but this demands clear-line-of-sight between the transceiver and the location it is serving, a directional antenna and wireless receiver. WiMax, which is less commonly available, only requires a WiMax receiver.

Caching

Regardless of what internet access model is used, caching can allow users to experience less of a delay when their PC requests data from the network. For example, Windows 7 BranchCache caches data locally, enabling a better user experience.

Devices

There is a huge temptation to buy cheap and low-impact devices, but a golden rule is to understand that you generally get what you pay for. For example, colour inkjet printers are usually the least expensive to buy but often have the highest per page printing costs. Same applies to computers – cheap computers are cheap for a reason and will probably end up costing more in the longer run through having to maintain sub-standard components and higher electricity consumption. As discussed, the best approach is laptops for which a typical entry-level specification is 3GHz (clock) speed, 500GB Hard Drive (HDD) with 2GB RAM.

There’s also a temptation to buy devices other than PCs, including some ‘slate’ devices which have been designed primarily for content consumption. As discussed in detail in the “Learning Software 2.0” article, enabling children to create content is far more important than just enabling them to consume it, so laptops have a far higher potential return on investment.

Projectors and screens are also essential hardware, and one clever solution from South Africa – the compujector – combines a computer and a projector in one device – see http://www.astralab.co.za

Wireless routers should be purchased with built in security, Virtual Private Network (VPN), Firewall, and Ethernet capabilities.

It’s important to consider cabinets for securely storing and charging laptops too. Sometimes called “Classroom on Wheels”, these enable computers to be taken to different parts of the school. Lapsafe, is one leading manufacture worth checking out.

Network Management

With power, internet access, security and the right kind of facilities in place, the next challenge is to manage the devices so they are used effectively. This means controlling how the computers are used – creating and managing accounts; sharing files and learning materials; installing applications; monitoring and managing usage and hardware; protecting computers from viruses etc.

Figure 7. Windows Mulitpoint Server – controlling a mix of client computers

Windows Multipoint Server 2011 provides a solution which enables one computer to be used by up to 10 users, each with their own monitor, keyboard and mouse. This approach lowers the total cost of ownership by 66% compared to a traditional PC deployment, which typically uses a model that requires separate servers to enable file and hardware sharing, and computer management. WMS 2011 also enables teachers to easily control a classroom network, including networked client devices such as laptops. This was put to great effect in Haiti where, following the recent earthquake there, computer labs were hastily assembled with off-grid power solutions to deliver learning services.

Training

At this stage, training is about two key things – acquiring basic computing concepts and learning new pedagogic methods. Microsoft Digital Literacy helps students learn and assess their understanding of basic computing concepts and acquire 21st Century skills; and training for teachers in new pedagogic methods, which organisations such as Education Impact can provide .

Architectures

The main building blocks for introducing ICT into schools are as follows:

Figure 8. Key building blocks for taking the first steps

Who owns the computer makes a lot of difference. This decision narrows the access option to 1:1 – one device per student. If students get to take them home, the need for secure storage and charging diminishes – on the assumption that the computers can be used throughout the school. This in turn leads to decisions about pedagogy – will usage be restricted to a single room, or will students use the devices from lesson to lesson?

Figure 9. Different access options

Finally, decisions about lab layout are important too. Here the options range from “traditional” to “collaborative”.

Figure 10. Traditional classroom layout

Figure 11. Collaborative classroom layout

Is it worth the effort?

Introducing ICT into schools for the first time is costly and time-consuming. In Queensland Australia, 20 preparatory steps are taken before laptops are introduced into schools. First-time ICT introduction into any organisation is a non-trivial task.

According to the World Bank, much of the rationale for using ICT to benefit education has focused on its potential for bringing about changes in the teaching-learning paradigm. In practice, however, ICT is most often used to support existing teaching and learning practices with new and expensive tools.

But the World Bank goes on to say “consensus seems to argue that the introduction and use of ICT in education can be a useful tool to help promote and enable educational reform; ICT is both an important motivational tool for learning, and can promote greater efficiencies in education systems and practices”. With $2.4trn/year spent on schooling, with some systems just 7% effective – YES! it simply has to be worth taking these first steps.

Resources:

Thanks to Nasha Fitter and Rob Bayuk.