The Transformed Phase

This is the fourth and final article on the phases of transformation that schooling systems go through. The first was “Taking the First Steps”, and this phase is characterized by access. The second, Taking the Next Steps – The ‘Enhanced’ Phase, is where technology is used to enhance existing processes. The third -“The Strategic Phase” – is characterized by using technology to meet strategic goals and help determine what those goals should be.

Feedback that readers have kindly sent me had prompted me to adjust the overall maturity framework so each of the main characteristics of each phase now look like this:

Four Stages of Schooling System Maturity

Whilst the three preceding phases were about applying technology to schools as they currently are, the Transformed Phase is about fundamentally changing the nature of schooling itself.

Using ICT to transform schooling allows us to ask questions such as “where is school”, “how do we deliver personalised and engaging learning experiences”, and “how can we develop highly effective and efficient schooling systems”?

Whilst transformation will mean many different things to many different people, there are three main ingredients to a transformed schooling system.

The first is providing anytime, anywhere learning for all citizens. The second is providing highly personalised experiences to all learners. The third is about building a culture of high performance throughout the entire schooling system.

Anytime Anywhere Learning For All

The first principle in transforming schooling is to redefine its “customer” base. At present, schooling reaches learners between the ages of 5 to 18, within narrowly defined geographic boundaries, and for around 18% of the year only. Now, there is a significant opportunity to deliver learning services to entire populations at relatively low costs. This is because the cost of digital content and software only marginally increases with the number of users, and because the cost of delivering e-learning services at massive scale through Cloud computing is increasingly cheap and getting cheaper.

To date we have thought about learning in the physical sense of going to a place called a school. Going forward, schools will facilitate learning less as a physical experience and more as one that can take place across different locations. Increasingly, we can expect the process of schooling to become less dependent on learners regularly attending a single campus over a long period of time.

Schooling will spread out of the physical confines of the school campus, and into ‘found space’ such as offices; high street locations; apartments; and even the homes of children.

The youngest learners need somewhere near their own home where they can physically go to access learning facilities; to learn with other groups of learners and access richer materials than those which they have in their own home. Older learners need learning spaces to interact with their tutors, counsellors and learning managers, but also need to learn in environments that are appropriate to their learning tasks. For example, a specialist science learning module – say optics, for example – may well be based in a traditional (campus) school laboratory, but equally there could be a company in the local community specialising in optics that would be willing for students to learn at their facilities.

In this model, there is still room for the traditional “Campus School”, but as a social, intellectual and resource hub – a place for those specialist learning facilities which might not be available in the local community such as laboratories, workshops, libraries, art studios and gymnasia. The Campus School is also a place from which to organise and manage learning and produce learning content.

The Campus School of the future will be a community resource; it will be open for 52 weeks a year, 7 days a week from 7.30 am (with breakfast clubs, computer clubs, gym facilities etc.), and will stay open until 10.00 pm (with after school clubs, homework clubs, sports facilities, cyber cafes etc). Its pupils will be aged 1 to 100. The four walls of a classroom/school will be replaced with online classrooms/schools/homes, ensuring access to technology and information for all.

Many university towns reflect this approach, where university learning facilities are embedded in the local community. Schooling is catching up. In “First Steps” we’ve already seen the ‘Kiosk’ model in India, where learning is simply put out onto the street to be consumed by self-organising groups of children. On the other side of the world, in New Zealand, Discovery Learning has schooling facilities deeply embedded in the community with locations in shopping malls and central business districts. Here, “school” isn’t a building and children are given “trust licences” to learn where they need to in the local community.

In this model, there is a vast spectrum of types of learning spaces, from traditional classrooms to cyber cafes, each type able to facilitate different levels of collaboration and self-directed learning.

Learning Spaces (C/O lookred)

New types of learning spaces will facilitate a much wider spectrum of learning methods too:

Technology Enabled Learning Styles. C/O lookred

Where Is School?

“Anytime Anywhere Learning for All” means exactly that. Every citizen, anywhere, able to access organised learning.  Not everyone will need to, or be able to, attend school in order to receive schooling services, which poses the question “where is school?” In the transformed schooling model, schooling is embedded deeply into the local community in the following way.

Anytime Anywhere Learning for All

1. Community Learning Spaces

Community Learning Spaces are places in which formal, organised schooling takes place for school age learners, that are not within the walls of the traditional Campus School. These spaces are, in effect, “franchises” of the Campus School, and firmly embedded into the Campus School’s systems. Learners in Community Learning Spaces have managed internet access, and plug their personal learning devices straight into e-Learning Service. Even the youngest children can learn with ICT – e.g. games based learning, immersive environments, interactive whiteboards and programmable toys. Learning to write with a Tablet PC helps young children to acquire basic skills long before they can type or use a mouse.

Learners are registered as members of the Connected Learning Community and the process of data collection begins. Managed learning pathways and dynamic timetables ensure that students work on the tasks that are most appropriate for their stage of learning. A spectrum of creativity, productivity and learning tools ensure that the optimal blend of computer and teacher mediated learning takes place. The ICT infrastructure comprises wireless network, workstations, display, scanners. Infrastructure and Core Sofware Services mean that computers joining the wireless network are managed via a Virtual Private Network. Users and devices are authenticated, and policies – especially security and filtering policies – are imposed.

Teachers, assistants and other responsible adults – connected to peers and experts through the technology – directly support the learning process. Learners progress through the curriculum as quickly as their learning performance permits, and move to different learning spaces when appropriate. Staff and learners alike access the Connected Learning Community portal to get information, content and tools. Learners can see their assignments, feedback, learning materials and web links from a single site, and populate an e-portfolio with their work. Community Learning Spaces are extensions of
the Campus School, and both staff and learners will spend some time at there.

2. Campus School

The Campus School acts as a central point for organising, managing and creating Anytime Anywhere Learning in the community. The Campus School in effect “franchises” learning operations in Community Learning Spaces, so ICT is used to drive alignment; manage performance; and ensure high quality, paperless administrative processes. Live communications ensure that expertise within and beyond the Campus School can be “piped” into the Community Learning Spaces (CLS) on demand.

The IT Infrastructure of the CLSs are supplied as a service from the Campus School.

Learners – of all ages – visit the Campus School to use specialist facilities and IT equipment that are unavailable in the Community Learning Spaces. Whilst learners bring their personal learning devices into the campus, the site has a proliferation of multi-touch interactive displays and these enable learners to access a vast array of information and content from anywhere on the site.

In the Schooling Enterprise Architecture model, Campus Schools are branch sites from the Local Education Authority hubs and as such receive the full range of Schooling Enterprise Services for Student Relationship Management, intelligent intervention, performance management, planning, operations and administration.

A master database of resources – people, spaces, equipment and content – enables the Campus School to dynamically timetable learners so their precise learning needs can be met immediately. Predictive analysis of learning pathways enables the system to book or purchase resources well in advance.

Underpinning the IT infrastructure at the school and its “franchises” is a set of Core Software Services including Security, Identity, Comms & Collab, System Management and Directory services. Services are either delivered through on-premises servers or relayed from data centres, private and public clouds “upstream” at LEA and/or MoE levels.

3. Local Education Authority

As a Hub in the Schooling Enterprise Architecture, the Local Education Authority’s main role is to deliver Schooling Enterprise Services to Campus Schools. Their managerial functions, facilitated by ICT, are to drive accountability, alignment and performance.

Another key role is to run large scale access programmes. Using aggregated buying power and regional connections the LEA is in an ideal position to acquire devices, infrastructure components and support for the best price-to-quality ratio. As a Hub for the MoE, LEAs should be able to ‘enforce’ MoE mandates on standards, quality and Service Level Agreements.

The LEA can also be an aggregation point for data held on children by different authorities – health, social care, the police and education – to be aggregated to give a secure ‘big picture’ on children,
particularly those who may be at risk.

4. Workplace

Anytime anywhere learning for all means delivering learning experiences to all, including those in work. Online vocational courses are available through the Connected Learning Community portal. Workplaces offer valuable learning opportunities to learners of all ages, especially where specialised equipment is beyond the financial reach of the Campus School. The workplace can also be used to house Community Learning Spaces. Being part of the Connected Learning Community Portal; local businesses can have direct dialogue with – and receive relevant learning services from – their local Campus School, FE College and University to better meet the learning needs of their organisations.

5. University

Universities offer a rich extension to the Campus School learning community by offering online access to lectures, experts and learning resources. Within the Anytime anywhere learning model, Higher Education is made available to students who are ready to take learning modules offered by the University – virtually or otherwise.

6. Off-Site Learning Environments

With community-wide Wi-Fi coverage, homes, cyber cafés, hospitals, and recreation areas can all be turned into learning environments.

Personalised Learning

Transformed schooling organises the learning around the individual, not the other way around.

Learning, by definition, is personal—no one else can learn for you. People learn different things at different speeds and in different ways. When students walk into a learning space, they bring very different sets of attributes, abilities, knowledge, skills, understandings and attitudes with them.

Over recent years, the concept of personalising learning has gained considerable ground.

From a technical perspective, personalising learning is about:

  • Delivering an extended range of opportunities to learn – individually and collaboratively
  • Delivering content that addresses precise learning needs
  • Managing learning pathways

Extending Opportunities to Learn

The wider and deeper the choice of content, the more personalised the learning experience can be. When providing learning to an entire community, the type of learning experience consumed will range from informal learning to structured and accredited courses.

Extended Learning Opportunities for All

With a wide and deep supply of learning content, learners can have a wide choice of learning experiences, modalities, pathways and assessments. For example, being able to pick from a menu of languages to learn is a more personalised experience than just having one to choose from. To be able to choose what level to study a language at – from beginner to advanced – again adds to the degree of personalisation.

Personalised learning is not about learning in isolation, however.  It is quite the opposite in, fact.  Learning is a social activity and personalising the learning experience is to do with providing opportunities to collaborate as well as to learn independently. A learning task that has been personalised for somebody could involve them working in a team, and part of the assessment could be how well they have managed to collaborate with other people. Therefore, another technical requirement here is to provide Communication and Collaboration tools – the more sophisticated these tools, the
greater the possible degree of personalisation.

Addressing Precise Learning Needs

Learners learn in completely different ways, and at different rates depending on prior knowledge and their learning styles. Therefore personalised learning systems need to deliver content so that different learning styles are addressed and different learning speeds are catered for. For example, in learning about the skeleton of dinosaurs, one learner might learn best by listening to a recording, another through looking at pictures, another by using a Tablet PC to kinaesthetically piece together the bones with a stylus.

From a technical point this means that content needs to be packaged so that learners can access it through multiple learning modes. Increasingly there will be automated agents that scour the internet and deliver content that precisely matches learning needs.

The relative length of time that it takes a learner to acquire the expected learning in each module shouldn’t matter as the e-learning services will adjust the personal learning pathway that the learner takes accordingly.

Managing Personal Learning Pathways

The extent to which a learning task has been personalised is a function of the extent to which that individual’s prior knowledge, skills, preferred learning styles, and attitudes have been taken into account when assigning the task.

In this model, learners are constantly assessed as they move through the learning programme, and the pathways that they take continuously evolve as they work their way through. This relies on feedback loops and systems which can dynamically adapt to the twists and turns of the learning process, and set challenging learning goals and tasks. This is essentially about using “business logic” which in turn uses data to decide what students need to learn next and manage the learning process.

Setting the learning task automatically is something that intelligent tutoring systems and learning management systems such as “Success Maker” have been doing for many years. However, if completing the learning task needs more than just a computer, managing the process dynamically becomes complicated.

This is where dynamic timetabling comes in. Dynamic timetabling starts with the premise that learning should be organised on a ‘performance’ as opposed to a ‘time’ basis (see Schooling at the Speed of Thought for more details). The core idea is that dynamic timetabling matches the optimal learning experience for a learner to the resources needed to deliver it. For example, if the learner has  mastered the concept of soil erosion in Geography, the next task may be to apply that learning in a practical experiment. This involves working with others who are at the same learning stage, using equipment, a physical space and teacher/assistant supervision. Ideally, the dynamic timetabling system will have predicted when these resources will be needed, organised them ahead of schedule and matched the learner to what they need to complete the next task.

Dynamic Timetabling

Today, this can be at least partially accomplished through resource scheduling within CRM.

Once the learning task is completed, a record of achievement builds in the learner’s e-portfolio.

Culture of Performance

In the Transformed Phase the entire schooling system is working at optimum efficiency and effectiveness – what Joey Fitts and Bruno Aziza (Driving Business Performance, 2008) call a “Culture of Performance”. To get to this stage schooling systems will have gone through the following stages:

  • First Steps: Increasing visibility
  • Enhanced: Moving beyond gut feel, and planning for success
  • Strategic: Executing on strategy

A culture of performance is goal orientated; results are measured and members of the Connected Learning Community are competitive in a constructive way. A culture of performance is
about transparency, predictability, and the ability to adapt to changing conditions. With capabilities to monitor, analyse, and plan, performance orientated organisations can create a culture where information is a prized asset, aligned execution is the norm, and accountability is embedded.

From a learner’s perspective, this is about friction-free administration regarding courses, options and assessments. It’s about micro payments, and cashless vending, and not having to repeatedly enter the same basic data for silo’d administrative processes. It’s also about the seamless escalations of issues – such as requests for special support.

From a teacher’s perspective this is about doing the lowest possible levels of administrative tasks, confident in the knowledge that the system is dealing with the administrative mechanics of running the schooling operations. For those administrative tasks that teacher have to do, reporting, administration, productivity and communication & collaboration tools ensure that the tasks are efficiently executed and add real value to the organisation.

Administrators and managers get the benefit of using processes that have been integrated. For example, when new staff join the organisation, background checks, basic data collection, terms and conditions, salary and on-boarding systems all work together as a single function, crossing organisational boundaries automatically. When strategy is set at the highest organisational level, this cascades down automatically into the objective setting process, ensuring organisational alignment. Performance management tools linked to in-depth data about learner performance ensure that teaching staff are rewarded fairly. Business intelligence is available to provide deep insights into operations to ensure that resources are being used to maximum effect.

Bringing it All Together

The key difference between a transformed schooling system and any of the other phases is the degree to which the entire system is architected around the student.

Learner at the Centre

The Transformed schooling system will integrate a spectrum of services and processes, many which would have been in silos before the transformation process, around the student. The result of this is that the student experiences a range of highly individualised services, delivered by a high performance, highly connected, lean, efficient and cost effective schooling system.

Getting to Transformed schooling is a long journey. In most countries there will be significant inertia from legacy systems. Paradoxically, one of the drivers for transformation is diminishing budgets. In the United States, for example, there is a strong surge towards anytime anywhere, personalised learning for all – delivered from outside the formal schooling system, driven by collapsing schooling budgets and widespread dissatisfaction with the current system.

Ultimately, the point of investing in transforming a schooling system is to get an order-of-magnitude improvement in return on education budget investment, and this cannot be done in isolation. The whole enterprise of transforming schooling needs to be organised within the framework of a Schooling Enterprise Architecture, as described in detail in Schooling at the Speed of Thought.

Schooling Enterprise Architecture

Focusing on the “IT Platform Architecture”, the Transformed phase has 5 interconnected layers:

Tranformed phase - five layer Schooling Enterprise Technology Architecture

And finally, across each layer are the following key technology levers:

Schooling Enterprise Technical Concept Architecture - Transformation Phase

This is the last in this series of articles on the phases through which schooling systems evolve, but watch this space for related articles. All comments, feedback, questions and suggestions for articles will be very welcomed.

Thanks to Matthew Woodruff and Chris Poole from lookred for contributions to this article.

Cloud Watching #2 – How to Manage 30Bn Trees Worth of Data

Data is fundamental to operating schooling systems. Without data schooling systems would grind to a halt – teachers wouldn’t get paid; students wouldn’t get transported; taught and fed; and essential services would cease to operate.

As the value of good data for decision making is becoming more widely understood, the quantity of data in the world’s schooling systems is ballooning. But how much data are we talking about, how fast is it growing, and how can it be better managed.

To get a sense of how big the issue is, let’s start by looking at Charlotte Mecklenburg in the US – a School District that has paid a lot of attention to its data and information systems recently. According to David Fitzgerald, Vice President of the Education Group at Mariner, Charlotte Mecklenburg School District in the US plans to use 70 Terabytes for a system with 140,000 students – 524.3MB per student.

The US and Western Europe account for ~10% of the world’s school students population – 0.12Bn. So, assuming similar levels of consumption across these regions, we can estimate that in these areas alone there is 60,000TB of data in schooling systems. 1TB = 50k trees worth of paper and print, so we’re looking at 3bn trees worth of data. Imagine that every student on the planet used the same amount of data as Charlotte Mecklenburg – that would add up to 30bn trees.

Whilst it’s currently unlikely that the amount of data in schooling systems adds up to this amount yet, there are several factors pushing it hard in this direction.

For example, major countries such as Russia, Mexico and Brazil are developing and running massive student data operations, increasing both the quantities and sophistication of data used.

UNESCO (2003) state that most countries develop education databases, and they also specify the optimal datasets that should be maintained. Let’s suppose that this adds up to a minimum of 1/2 a typewritten page on each of the student population living outside the USA and Western Europe, roughly 1 Kilobytes each. Rounding-off, we can estimate that 1bn students x 1Kb = 954GB. It’s interesting to think that this could be kept on a single external hard drive no bigger than a paperback book. However, add other data, say a single low-resolution image per student, and that rises by a factor of 8. Add digital work produced by students and this number grows exponentially.  

Also, there is a sharp increase in the rate at which data is used in developed countries. Take New South Wales for example. Last year, New South Wales Department of Education and Training – which has 1.3m students – used 280TB of storage space – but this has been doubling every year for last five years!

The amount of data used in schooling can only increase as governments around the world recognise that it is core to improving effectiveness.

WHY IS MANAGING DATA CORE TO IMPROVING SCHOOLING EFFECTIVENESS?

Driven by the need for better accountability for how public funds are spent, and the widespread use of international benchmarks such as PISA, there is a sharp increase in the number of governments and private companies that are investing in solutions for data driven decision making. These investments aim to use data to:

  • Improve student performance: Give students, parents, teachers and administrators a clear picture of student performance at an individual or group level so they can adjust and personalise learning accordingly
  • Make better management decisions: Inform routine decisions and strategic planning across all enablers and disciplines with accurate, readily-available data
  • Increase accountability: Quickly and easily understand performance across organisations
  • Manage resources more effectively: Gain a better understanding of projected revenues and expenditures; keep track of financial health; compare costs against those of other organisations
  • Drive administrative efficiencies: Improve time and effort taken to report information. Improve quality and presentation of information.

SO WE HAVE TO TALK ABOUT DATABASES THEN?

Why is it that peoples’ eyes glaze over when you start talking about databases? Most web pages that you will experience – including this one – are driven by databases. For most people databases are “black boxes”, and few care about how they work or what they do. However, a basic understanding of databases and how they work is essential to understanding how ICT can make schooling more effective – so let’s take a quick database 101:

WHAT IS A DATABASE?

Databases arrange data as sets of records, and these records are arranged as rows. Each record consists of several fields which are arranged in columns. The rows and columns combine to form a table.

 

Most large scale databases are Relational, which means that they can connect data from two or more tables.

  • Forms are a main way to enter data into a database
  • Queries are used to get data out of a database.
  • Reports format and display data from the database.

Indexes improve the speed of data retrieval operations by querying a unique key which in turn uniquely identifies each row in a table. Metadata – data about data – can include tables of all tables, their names, sizes and number of rows in each table; or tables of columns, what tables they are used in, and the type of data stored in each column.

DATABASE ESSENTIALS

At the heart of a database is the Database Engine – software for storing, processing and securing data; providing controlled access and processing capabilities. The structure of the database is described in a Schema, and this is usually written in a language called “Structured Query Language” SQL. This language determines how data is inserted, queried, updated and deleted. Different database vendors have different extension to SQL – T-SQL is Microsoft’s extension to SQL.  

A Data Warehouse is a database that extracts data from operational systems for reporting. It can aggregate data from different sources, and ensure that the integrity of operational data isn’t compromised by the processes associated with analysing it.

Integration Services are the means by which data from various sources can be integrated, extracted, transformed, and loaded into data warehouses.

OLAP – or Online Analytical Processing – enables data to be manipulated and analysed from multiple perspectives. Eg a Longitudinal analysis could involve the study of student progress over time, and take advantage of an OLAP Cube to interrogate a number of different dimensions over a given period.

 

Analysis Services supports OLAP by allowing the design, creation, and management of multidimensional structures that contain data aggregated from a range of data sources, such as relational databases.

Data Mining – is about extracting patterns from large sets of data, to yield Business Intelligence (BI) for example, high achievement correlated with the number of books in the family home, or low reading ability impacting examination results. Data Mining Services enables the design, creation, and visualisation of data mining models.

Reporting Services – enabling reports to be published in various formats drawing on content from a variety of data sources. They also centrally manage security and subscriptions. Portal Integration – it’s crucial to for end-users to work with operational data – in ‘dashboard’ format ideally – through a portal site.

 

To be able to manage databases is crucial and several key tools are used for this. Master Data Services is the means by which all applications across the organization can rely on a central, accurate source of information.  Replication – copying and distributing data and database objects from one database to another, and synchronizing between databases to maintain consistency. Automated compression and backup are also key tools.

WHAT HAS THIS GOT TO DO WITH THE CLOUD?

With massive growth in the amount of data used in schooling comes questions about sustainability, cost and management. The Cloud offers some major advantages here:

1. Ubiquity

Having data in the cloud makes it easier for authorized users with internet access to access that data from almost anywhere.

2. Management

In an enterprise architecture where resources are distributed, organisations usually have a single SQL Server back-end with WAN links and/or multiple distributed SQL Server installations that replicate data with each other. Maintaining this kind of environment is time consuming and expensive. With the cloud, replication, backup, compression etc are all taken care of.

3. Pricing

As with other Cloud services, you only pay for what you use. During the peaks and troughs of schooling system operations, one can expect to see varying amounts of data storage requirements.

SQL AZURE

SQL Azure is Microsoft’s Cloud Database solution, and it offers the following benefits:

  • No physical administration required – software installation and patching is included, as SQL Azure is a platform as a service (PAAS)
  • High availability and fault tolerance are built in
  • Simple provisioning and deployment of multiple databases
  • Scale databases up or down based on business needs
  • Multitenant – i.e. a single database can provide services to multiple organisations
  • Integration with SQL Server and tooling including Visual Studio®
  • Support for T-SQL-based familiar relational database model
  • Option for pay-as-you-go pricing

The SQL Azure suit currently comprises of the following offerings, some currently on limited availability:

SQL Azure Database – a Platform as a Service (PaaS) relational database. Highly available and scalable .

SQL Azure Data Sync – allows organisations to extend their current sets of data into the Cloud. It provides synchronisation between an organisation’s current SQL on-premises databases and SQL Azure Databases in the Cloud.  Currently available in Community Technology Preview.

SQL Azure Reporting – a complete reporting infrastructure that enables users to see reports with visualizations such as maps, charts, gauges, sparklines etc. Currently available in Community Technology Preview. 

The Windows Azure Platform Appliance under limited trials, this will eventually enable organisations to deploy their own Cloud Services from within their own datacentres. The Windows Azure Platform Appliance consists of Windows Azure, SQL Azure and a Microsoft-specified configuration of network, storage and server hardware.

TAKING ADVANTAGE OF CLOUD DATABASE SERVICES

Taking full advantage of the Cloud is not something that is going to happen overnight. Besides careful analysis and planning for migrating existing services, Cloud computing opens up a whole set of questions around what new services could be offered. For example, the rise of virtual schooling across the world – as brilliantly analyzed in the US by Clayton Christensen in his book “Disrupting Class” – will be a major beneficiary of cheap, ubiquitous database services at massive scale.  

As pointed out in the Cloud Watching #1, moving to the Cloud is not without effort and risk. David Chappell, in his excellent paper “The Benefits and Risks of Cloud Platforms: A Guide for Business Leaders“ points out that storing data outside their organization makes people nervous. Many countries have regulations about where certain kinds of data can and can’t be stored, so before putting data into the Cloud platform, it’s important to ensure compliance.

A key question is to ask whether any given data centre is more secure than those of the major Cloud service providers. A significant data breach for a Cloud services provider is likely to mean a huge financial loss, so there’s a very strong incentive for them to keep the data they hold secure.

David Chappell also advises – “as with any new technology, starting small can be a good approach. Perhaps your first cloud application should be important, for instance, but not truly mission critical”. The same can be said for data.

CONCLUSION

Whilst its early days for Cloud based database services in Education, we’re beginning to see interest turning to into plans and action. For example, Curtin University in Perth, Australia, has started to move some of its services to the Cloud and intend to take advantage of SQL Azure. 

Educause Horizon Report 2010, includes an analysis of Cloud amongst other key and emerging technologies – http://wp.nmc.org/horizon2010/chapters/trends/ It states:

“The abundance of resources and relationships made easily accessible via the Internet is increasingly challenging us to revisit our roles as educators in sense-making, coaching, and credentialing”.

Cloud will no doubt change how data is gathered, manipulated and interrogated, and by making vast amounts of storage available at extremely low prices we can look forward to seeing innovative organisations build completely new services to reach growing numbers of learners in completely new ways.

FURTHER INFORMATION

A great introduction to databases: http://www.microsoft.com/student/en/us/techstudent/handson/database.aspx

Getting started with SQL Azure: http://msdn.microsoft.com/en-us/magazine/gg309175.aspx   

Migrating to SQL Azure: http://msdn.microsoft.com/en-us/library/ee730904.aspx  

“How much data is that?” – http://www.jamesshuggins.com/h/tek1/how_big.htm

Thanks to Sven Reinhardt, database guru, for input into this article.

School Improvement Solution from Tribal

It can take a lot of work for an individual school to build development plans, but a new solution from Tribal could help get better results with less time and effort. “Inspirational Schools Partnership™” (ISP) is part software toolset and part collaborative network.

David Moran, from Tribal explains – “Quantifying the culture of an organisation to enable transformation is difficult for schools. The key to solving this problem is gathering and understanding the right qualitative and quantitative data. With ISP, school leaders get reports from qualitative review; quantitative analysis of achievement; and attainment estimates based on tried and tested models. This can then be used to identify where a school’s strengths and areas for development are.

Two key software components are:

ISP Intelligence™ used by staff to create a clear picture of individuals and groups of students.

ISP Navigator™ provides a collaborative environment for developing knowledge of where the school is now and where they aspire to get to.

Underpinnng the solution is Silverlight, Pivot and SQL.

ISP is currently being piloted the UK with a launch anticipated at the end of this summer, and with plans to take it to other countries soon after. 

For more information click here.

Thanks to David Moran and Larry Nelson

Brazil – Moving Towards World Class Education

 

I had never considered air conditioning such an important classroom technology until I visited Escola Municipal Engenheiro Gastão Rangel in the outskirts of Rio de Janeiro. The sweltering heat, sparseness of the facilities, 30 teachers between 1000 students and overcrowded classrooms make this a brutal and challenging environment to teach and learn in. Within these tough conditions, however, are clear signs of deep and meaningful progress.

 

On the stage of the small assembly hall of the school stands Rafael Parente – a rare example of an Education Technology visionary who can actually “walk the talk”. Rafael works as Deputy Chancellor in charge of strategic projects in Rio’s Municipal Department of Education, where he developed Educopedia – a portal for lessons and content. Educopedia has 32 digital lessons for each curriculum area – one lesson for each week of the year – and provides opportunities for teacher-lead and independent learning. The Rio MoE are now in the midst of acquiring 100k netbooks for students’ use, and projectors, speakers and Wi-Fi connections in more than 400 classrooms so that Educopedia’s lessons can be projected by teachers.

The first phase of the Educopedia project took place with a large group of pilot schools between September and December 2010, and the feedback was very positive. The task for Rafael now is to win over the teachers in all of Rio’s schools. This means visiting as many schools as he possibly can to directly persuade the teachers to use Educopedia in their lessons. As in most Brazilian public schools, air conditioning, electricity, security and connectivity are all high priorities, so Rafael’s task is far from easy.  

What’s happening in Rio is indicative of what is happening across Brazil. There are an increasing number of pockets of innovation across the country, fueled by a growing acceptance for the need to modernize, and sustained support for ICT from the Federal and State Governments.

Brazil’s schooling system has benefited from sustained Government education reform over the past 15 years. According to “Achieving World Class Education in Brazil”, published by the World Bank in December 2010, the 2009 PISA results show substantial progress in education in Brazil. For example, since 2000 students have effectively gained a full academic year of Maths mastery. A key contributory factor to this progress is the increased use of data. A comprehensive index of school performance called IDEB (Indice de Desenvolvimento da Educacao Basica) is now used across the country. With an IDEB score for all but the smallest of Brazil’s 175,000 primary and secondary schools, 5,000-plus municipal school systems, 26 state systems and the federal district systems – every single segment of the Brazilian education system can benchmark how well its students are learning and how efficiently its school or school system is performing. Few other large federal countries in the world have achieved this.

However, Brazil still trails the OECD PISA average so there are no grounds for complacency. In order to sustain progress, Brazil needs to modernize further still – and with 50m in education, modernizing Brazil’s schooling system represents one of the biggest education challenges on the planet.

Taking a direct and comprehensive approach to modernising Brazilian public schools is Planeta Educacao – the education arm of Vitae Futurekids. With 900 staff and headquarters in Sao Paulo, Planeta Educacao recognizes the interconnectedness of everything in schooling systems. Roberta Bento, Vice President, Planeta Educação is a passionate believer in Brazil’s public schools – “Our programmes comprise a series of effective actions that involve students, directors, technicians, teachers and parents, promoting real changes in education. Our goal is the improvement in the performance of the student”. To that end, Planeta Educacao supply a total and integrated set of schooling services – infrastructure, technology (including products such as Office for Kids), programs and learning systems.

Other challenges that Brazil face are extreme distances and difficult-to-reach towns and villages. However, the Roberto Marinho Foundation – partners in the Educopedia project – has educated more than five million young people through high quality courses delivered through a combination of the television network, excellent books and trained teachers. Through the Telecurso project teachers were able to use satellite technology to interact with classrooms in the Amazon Forest.

In Pernambuco – in the north-east of the country – a network of schools called Procentro initiated in 2001 by Marcos Magalhães, president of electronics firm, Philips do Brasil, is proving that Public Private Partnerships can work in Brazil. Procentro has an annual dropout rate of 2%, much lower than the 17%  average for Pernambuco’s regular state schools. Click here for details.  

To underline the growing importance of ICT in the Brazilian Schooling System, Brazil has developed its own version of BETT. This year, Interdidatica will attract approximately 15k people to its tradeshow and 2.5k paying customers to its forum.

This year the theme of Interdidatica is “Innovation” – totally appropriate in a country with a strong tradition of engineering and innovation, e.g. aerospace giant Embraer. According to the World Bank, literally thousands of creative new programs and policies are being tried out at this moment across Brazil by dynamic, results-oriented secretaries of education. Few other countries in the world have the scale, scope and creativity of policy action that can be seen today in Brazil.

An inspiring example of innovation is Nave in Rio – a new high tech high school built out of a PPP between a Oi Futuro Fnd the State Government of Rio, aiming to prepare young people for careers in digital, entertainment and creative industries.

   

Not surprisingly, Brazil has a growing Education Technology Industry and a spectrum of innovative companies serve a growing education market. Gestar, for example, a Sao Paulo firm who developed the concept of “SRM” – Student Relationship Management built on CRM.

Then there is Grupo Positivo, the tenth largest computer manufacturer in the world who focus on education. They produce education software; run education portals; provide teacher training and educational and technical support for partner schools. Positivo even has its own university near its headquarters in Curitiba.

A significant success story coming out of Brazil is CDI – the Centre for Digital Inclusion founded by Rodrigo Baggio.  Brazil’s first campaign for donated computers was founded by Baggio, who then opened the first “Information Technology and Citizens Rights School” (ITCRS) in Dona Marta, a slum area in Rio De Janeiro. From these beginnings CDI grew to provide access to ICT to 1.3 million people 13 countries.

Right at the heart of ICT innovation in Brazil and with a string of successful implementations is Microsoft Brazil’s Education team, lead by Emilio Munaro. Working with all the major players, and innovative customers such as Instituto Ayrton Senna, SENAC, SENAI, SESC, Anhanguera, FIA, USP, Porto Seguro, Colégio São Luis, Microsoft is pushing the boundaries of using technology for maximum effectiveness in education helping deliver increasingly personalized learning services.

A concern raised by the World Bank in Achieving World Class Education in Brazil is that education spending is outpacing results. Brazil spends more on education than Mexico, Chile, India and Indonesia, which have similar demographic profiles. This means that there is a lot of scope for increased effectiveness from spending, and ICT, of  course, can play a major role in this.

With the advent of Cloud computing, the prospect of providing anytime anywhere learning for all is becoming realistic. It’s now time to consider how massive, cheap, and highly available computing services can be combined with a range of access technologies and high quality learning content, to open up learning opportunities for those in Brazil who are in the greatest need of it. Proof that access to ICT works for the poorest in society comes from some of CDIs case studies. With the prospect of the 2016 Olympics and the World Cup going to Rio; the discovery of oil off the coast of Brazil; a booming economy; and determined and innovative people pushing hard; there is every reason to believe that the next decade will see Brazil make significant progress towards achieving world class education for all.

Spotlight on Malaysia

The Malaysian “Smart School” concept, launched in 1999, aims help transform Malaysia’s economic activities from being based on natural resources to knowledge. It started with a pilot program involving 88 schools, building up technology infrastructure and training teachers. It is currently in the fourth stage of the roadmap (2010-2020) where technology becomes an integral part of  learning process with strong focus on outcome driven activities.

A lot of development have also taken place at the administrative level. For example – Educational Management Information System and Examination System

For further insights visit:

MDeC Smart School Department – The facilitator and coordinator in the development of Malaysian Smart School.

EduWEB TV – The official web TV of Ministry of Education Malaysia – also a place for short video lessons that can be used  in the classroom.

ICONedu  – A grant scheme aimed to produce local content targeted at putting educational projects and content online.

Cikgu.Net – A teacher-centric community portal used for collaborative discussions and exchanging ideas among teachers.