Putting the “i” into Singapore Schooling

With top rankings in PISA and TIMMS, Singapore is the envy of many schooling systems around the world. Whilst ICT is just one of a range of factors that affect learning outcomes, it is a key tool for meeting at least two of the four key desired outcomes of the Singapore schooling system – for all students to become self-directed and collaborative learners.

Singapore was one of the first countries in the world to have a national strategy for ICT in Schools. A succession of well-planned, funded and executed programmes focussing initially on infrastructure and training, and more recently focussing on self-directed learning – has driven effective use of ICT. For details of Singapore’s main ICT projects, see http://wp.me/P16Iyp-46

A great showcase for the effectiveness of this investment is Crescent Girls’ School, a member of the “Future School” programme, and recently awarded the status of Mentor School by Microsoft. Crescent also hosted the CRADLE conference on 1st – 3rd August.

On the surface, Crescent could be any other Secondary School, but a quick glance at the trophy cabinet next to the reception makes it clear that this school is totally committed to high performance. Crescent’s aim is to be at the forefront of harnessing technology to enhance learning outcomes. ICT is used extensively in both delivery and assessment and the school’s 1300 students each have their own Tablet PC. The goal of using ICT is to give students a degree of choice over what they learn and how they learn.

The students engage in a wide range of activities including 2D, 3D animation and robotics; multimedia production; photo-shooting and editing; and development and use of e-books. Particularly impressive is the use of Tablet PCs’ “inking” features for a range of activities including highly impressive manga artwork.

Crescent is moving towards project based learning with a series of “Integrated Secondary Curricula” programmes.

Virtual Reality is used at the school too. For example, in Geography, students experience immersive content showing erosion in a river – a concept that is much easier to grasp when viewing 3d animated rocks being swept along by the current from the perspective of the river bed.

Particularly impressive at Crescent is the way that teachers engage in the content creation process. For example, a complete suite of applications and content have been developed for the Tablet PC that not only exploits the pen and inking technologies but also address a range of different learning styles.

Taking this process further, teachers specified collaborative games to take advantage of the MultiTouch features in Windows 7 and HueLabs’ “Heumi” multitouch (Surface) devices. This means that students can now engage in a wide range of collaborative learning experiences, such as learning to write Chinese. As impressive as the technology itself is the way in which the room in which the Heumi devices are deployed. Here, in the “iCove”, strong colour coding of the devices and the seating, enable teachers to group learners according to their learning objectives.

More recently the school has introduced a biometric system that not only automatically records the students as present but takes their temperatures as they come into the school in the morning, enabling their health to be monitored.

The infrastructure that sits behind Crescent’s ICT provision is highly impressive. The infrastructure foundation is a Campus-wide wireless network with 100 Mbps Broadband. Tablet PCs are stored in steel lockers, and batteries are charged at charging stations.

Approximately 30 on-premises servers perform a range of essential back-end functions from authentication to content management. The Server infrastructure – based on a Microsoft platform – supports a rich tapestry of capabilities including:

  • i-Connect Learning Space – a role based portal for organising student’s learning and activities
  • Pearson’s Write to Learn – a system that helps “automate” the marking of essays
  • HeuX – Huelabs Classroom Management System – with lesson management, digital book library, real-time Communication and Collaboration include notes-sharing and social media; screen monitoring and broadcasting; Presence awareness; attendance; Video Conferencing
  • i-Media – content management system.
  • Interactive books

These solutions are supported by Windows Server; SQL Server; Microsoft SharePoint Portal Server; System Center; Live Communications Manager; Hyper-V and Live@Edu. Much of the learning that takes place at Crescent happens after school hours, and the Virtual Private Network enables students to have 24×7 access. It’s not uncommon to see the portal being used by students at home at 2.00AM.

Singapore schools benefit from very high quality teachers (only 10% of applicants get admitted into teacher training). This is reflected in the staff at Crescent. Principal, Mrs Eugenia Lim, supported by Chief Technology Architect for Learning, Mr Lee Boon Keng, have a highly structured and team orientated approach, underpinned by a strong focus on continuous professional development.

Every hour, the chimes of Big Ben ring across the school signifying a change of lesson. As with Cornwallis School in Kent in the UK, I was totally inspired by what I saw at Crescent but couldn’t help wondering whether a shift from time-based to a performance-based model would better fit such a technology rich approach to learning. Nonetheless, Crescent’s use of ICT is without doubt world leading.

Whilst Crescent Girls’ School is clearly a leader amongst leaders, it’s far from unique in Singapore in the way in which it innovates with technology. Singapore schools benefit from long term, consistent policy and investment in ICT in schooling. With their structured approaches, strong management and deep understanding of how ICT can make learning more effective, Singapore schools look set to continue to show the world how it’s done.

Fortunately for us all, Crescent Girls’ School are “giving back” by encouraging people to visit the school – both physically and virtually.

Thanks to Eugenia Lim, Lee Boon Keng and all the staff and students at Crescent Girl’s School.

Transforming Schooling in Old Buildings – “New Wine in Old Bottles”

A question that I get asked constantly is “how do we implement change in ordinary ‘factory schooling’ buildings”? Last week I was fortunate enough to be able to visit the Cornwallis Academy in Kent in the UK where they are part way through transforming out of the factory schooling model into something much more effective.

Whilst, clearly, there are significant differences between schooling systems in the UK and in other parts of the world, there are many lessons from Cornwallis that are applicable in most countries.

Cornwallis Academy is a large mixed secondary school with 1600 students and is part of a consortium of schools called Future Schools Trust, headed by Chris Gerry.

Results in Cornwallis have improved 16% since 2008 – but the ambitions of Chris, David Simons (Cornwallis’ Principal) and the staff go way beyond getting good academic qualifications. The aim of Cornwallis Academy is for their students to grow up to be happy, fulfilled citizens who can support themselves and contribute to society.

The main drivers for change at Cornwallis were:

  • Developing a work model for students and staff that is representative of the world outside the school
  • Building a team model to share good teaching practice rather than the traditional model of the ‘lonely ‘artisan’ teacher’ 
  • Developing a wider skill set such as social and 21st century skills that are relevant in modern world

These were all built around a relationship driven culture where pupils are part of the learning experience – not just recipients with the teachers in total command of the learning.

‘Attainment’ (i.e. learning performance) and ‘Wellbeing’ are the two main agendas that are used to ensure that students are successful.

  • The ‘Attainment’ agenda aims for 100% pass rate in examinations
  • The ‘Wellbeing’ agenda focuses on emotional intelligence and risk reduction, and recognises that social development helps drive academic success 

An economic model underpins management decisions across the Future Schools Trust consortium. In other words, managing costs and maximising effectiveness of spend are the key management drivers. Through the lense of economics, management at Cornwallis pull three main levers simultaneously:

People

A key aim is to develop more creative teachers through a more modern work environment that breaks the link with traditional approaches and attitudes.

Teachers are required to work in small groups and have choices about how they manage their work.

The school’s management can provide detailed guidance to teachers within this environment if they need to.

They are designing systems that feedback information on performance to both pupils and teachers, and compare performance with averages. Exposing the data in an open way provides “nudges” to performance. There is a focus on improving lesson quality and continuously collecting data on how well pupils are learning.

The school runs a 6 weekly reporting schedule that includes reporting on the development of “soft skills”.  Teaching teams are continuously collecting and reporting lesson data.

Space

Much work has been done to remodel learning spaces within existing buildings and within constrained budgets. Much of this has involved knocking down walls to create bigger spaces and painting – low-budget activities. The aims were to:

  • Impact mood positively
  • Foster group work
  • Provide more space than conventional classrooms
  • Allow some choice of work space
  • Embed technology

The Future Schools Trust has pioneered a new kind of learning space called the “Learning Plaza” – a large space created from knocking down walls between traditional classrooms, or using an existing large space such as an assembly hall.

 

This space was once four separate classrooms. Knocking down walls forces a transformation at relatively low cost.

According to Gerald Haigh,  a UK Education Journalist, “if we believe that transformation involves providing children with a wide range of learning opportunities, among which sitting still and listening to the teacher is one of the least important, then the concept of the ‘Learning Plaza’ immediately looks like an entirely logical solution.

There, children can consult more than one teacher. Teachers can consult each other. Children can work in groups—of any size from two to ninety—or independently, and with their technology to hand.

The figures show that the children who use the Learning Plazas are less likely to be absent from school, and much less likely to be excluded for misbehaviour”.

The Learning Plaza concept – large open spaces, and lots of technology, give staff and students room for creativity and collaboration

A key Change Management principle is “Test Bed Areas”, and through trialling Learning Plazas concept they found that it is 20% cheaper to build schools based on the plaza concept – for a start, there is less brick and mortar going into a new-build school using this approach.

Technology

At Cornwallis, they are not afraid to take the best ideas from the world of business, so they make great use of “Business Intelligence” – BI. This allows them to operate a model driven by measurement.  

Working closely with Microsoft partner lookred, they pioneered the use of CRM (SRM) and predictive analytics to manage student relationships.     

22 different risk areas are identified, and each student has an individual risk profile relating to likely success both at school and beyond. This enables teaching staff to make data-driven interventions, and manage risk. The system is ‘intelligent’ – over time it ‘learns’ which approaches have been most successful. The interventions are informed by the consortium’s work with Yale University on ‘life space’ which looks at how children make life choices and how they might influence these.

Underpinning this, Management Information Systems provide real-time information on how the school is performing.

Technology is used extensively in teaching and learning, with most of the curriculum online now and the intent to have it all online by the start of the 2011-2012 school year. Students and staff have ubiquitous access to devices, and Cornwallis was one of the first schools in the UK to make extensive use of Tablet PCs. The school also runs a “Connected Learning Community” through a Learning Gateway (SharePoint) portal, which provides all stakeholders a unified platform for communication and collaboration.

Students and staff make extensive use of technology, including a Learning Gateway portal

This smart use of technology leads to potential savings across a range of public sector services including welfare, health and law enforcement.

Looking to the Future

 

“Breaking the mould” – where there once were classrooms, there’s now a well used informal learning space, complete with coffee shop

Cornwallis will be moving into a new building in September 2011, with all the advantages of having first trialled new approaches successfully.

In recognition of the lessons that can be learned from the Cornwallis experience, this summer they will host 180 leaders from China who will be there to learn how to bring about transformational change at scale.

Key Lessons from Cornwallis

  1. Economics underpins everything. Financial autonomy is essential.
  2. Leadership training is crucial. You can have all the physical assets you like, but without clear goals and solid management nothing will happen.
  3. Create momentum, and advance on all three fronts – people, space and technology – aggressively and in parallel.
  4. Invest in Test Bed Areas – don’t implement wide scale reform without first trialling it. Start with transforming the model for a single year group.
  5. Focus on the end-user experience. It’s all about building engaging learning experiences around the student, not forcing students to fit the factory model.  

Conclusions

The result of the new approaches at Cornwallis is that learning has speeded up, to the point that the “key stages” – the time taken to progress from one segment of the UK National Curriculum to the next – can be accelerated. The staff at Cornwallis believe that their students could complete Key Stage 3 in 2 years instead of 3; external examinations (GCSE) in 1 year instead of 2; and even university courses in Year 13.  

Whilst I’m totally inspired by what I saw at Cornwallis, I think there is one crucial  piece missing from the jigsaw puzzle – a full shift from a time-based to a performance-based model. This approach is brilliantly articulated by Richard DeLorenzo from the Reinventing Schools Coalition in his book “Delivering on the Promise, and underpins the approach taken by Kunskapsskolan schools. To do this at scale will require “dynamic timetabling”, something that a number of organisations are keen to develop.

Saying that, Cornwallis offer a solid, practical and well thought through model for anyone wishing to make transformational change within hard resource and environmental constraints. What’s more, they generously share their “secret sauce” for the benefit of the wider community.

A Principal for whom I once worked told me that the best way to eat an elephant is “one chunk at a time”. Cornwallis has shown that it’s better to eat 3 chunks  – people, spaces and technology – simultaneously.

Thanks to Chris Gerry; David Simons; Claire Thompson; the staff and students at Cornwallis; Chris Poole and Matthew Woodruff of lookred; Andrew Wild of Manchester City Council; and to my Russian and CEE colleagues, Igor Balandin; Anton Shulzhenko; Alexander Pavlov and Teo Milev, who prompted the visit.

Cloud Watching #4 – Managing Learning Content

In the old days it was simple. Agree a curriculum; approve and distribute the books; get teachers to push the contents into empty minds.

Since then everything has changed, especially:

  • The need for students to learn more effectively
  • Student’s appetite for active rather than passive learning experiences
  • Explosive growth of content and ease of access to it

So what does all this mean for learning content, and how it gets managed? On the one hand it could mean chaos as schooling systems deal with extreme complexity – infinite permutations of content types, authoring, storage, categorization, search, access, retrieval, and rendering methods. On the other hand, managed properly, it means the right content built or used by the right person at the right time – making learning significantly more effective. The ease with which ideas, concepts and knowledge are acquired by learners is a function of the availably of engaging learning content and how it is used, so managing content effectively is critical to improving learning effectiveness.

It’s no longer sufficient to think of learning content as a one-way street terminating in the minds of “empty headed” learners. It’s pretty clear that learning is much more effective when students create content rather than just consume it, and the proliferation of easy-to-use content development tools means that students themselves can produce professional standard learning content.

Given the explosion of web content and ease of access to it, the role of publishers is changing quickly too. Publishers have long been considered bastions of authoritative content, but back in 2005 Nature Magazine concluded that Wikipedia and Encyclopedia Britannica were virtually equal in terms of the accuracy of their scientific articles. The challenge for publishers now is to be authoritative, relevant and engaging – not just providing the answers but the conditions in which learners construct their own answers. Learning content has to become much more interactive, immersive, challenging and fun, and it also has to connect to systems that enable intelligent intervention, manage the learning process, and provide analysis.

Schooling systems are faced with bewildering choices when it comes to architecting Learning Content Management Systems (LMCS), so a good place to start is with some questions about what outcomes should be expected from investments in this space. E.g. how do we:

  • Manage content to ensure that the most effective learning takes place
  • Exploit content creation, management, and consumption technologies
  • Leverage new models of content production
  • Ensure that publishers can maintain profitability and invest in R&D
  • Minimise costs and maximise the “Content Economy”

To help frame this discussion we can look to the work of Microsoft Research and their Higher Education project entitled “Technologies for the Scholarly Communications Lifecycle”. Here they describe six distinct areas for supporting the lifecycle of scholarly content. Adapting this for managing learning content within a Schooling Enterprise Architecture we arrive at the following model:

Figure 1. Learning Content Lifecylce for Schooling Enterprises

But before we go any further, what exactly do we mean by learning content?

WHAT IS LEARNING CONTENT?

At one end of the spectrum there are widely available digital entities from which someone can learn – from sophisticated Silverlight or Flash applications to video clips to plain text. At the other end of the spectrum there are highly structured learning content packages designed to meet specific learning objectives.

A key concept in learning content is the “Learning Object” – a self-contained package, with a clear educational purpose containing –

  • Learning content – digital entities including text, images, sound, video
  • Learning tasks
  • Interface to a workflow system so the next learning task can be appropriately set
  • The means by which to assess what learning has resulted
  • Metadata including – learning objective; prerequisite skills; topic; the “interaction model”; technology requirements; educational level; relationships to other learning objects; rights

Ideally, it should be possible to:

  • Edit a Learning Object so it can be tailored to precise requirements
  • Group it into larger collections of content, including longer course structures

Conveniently, there is a standard for how learning objects should be constructed and used. The Sharable Content Object Reference Model (SCORM) is a standard that defines communications between content learning management systems, and how a learning object should be packaged into a transferable ZIP file. (See below for further details).

Advances in technology are also changing views about what actually counts as content.  For example, it could be argued that threads of dialogue through blogs, wikis and instant messaging are forms of content production.

CREATING LEARNING CONTENT

The old steps-and-stages, linear, age-cohorts and classes-dominated, subject-orientated curriculum is being superseded. Its successor is a “Thinking Curriculum”, based on a search for knowledge, on developing competencies rather than consuming content. The Thinking Curriuculum is information rich, multi-layered, and connected.

With the creation of high quality content relatively easy to accomplish, we have to ask a fundamental question – “who gets to produce learning content?” As explored in “High Performance Schools” a key way to get effective learning is to get students to create their own content then get peers to review it. With cheap webcams; basic video editing software; drawing, graphics, and productivity software; web development and portal tools, its increasingly easy to get great results from this approach.

There will always be a role for professionally produced, authoritative content. However, the world of publishing needs to embrace the idea that students and teachers will increasingly want to build their own learning resources from individual learning objects, in much the same way as building models using Lego®.

MANAGING CONTENT

There are essentially two types of content – structured and unstructured. Structured content is that which has been classified, and stored in a way that makes it easy to be found and used. Unstructured content is all other content.

Imposing structure and order on the exponentially expanding unstructured world of user-generated content is a major challenge for all organizations.

 

Figure 2. Unstructured content grows exponentially

Key concepts in Content Management include:

  • Document Management
  • Web Content Management
  • Rich Media Management
  • Archiving and Library Services
  • Scanning (Image and Capture)
  • Document Output Management
  • Workflows
  • Learning Process Management

Learning Content Management Systems (LCMS) help schooling systems organise and facilitate the collaborative creation of learning content, providing developers, authors and subject matter experts the means to create and use learning content. They enable the management of the full life cycle of content – from initial creation to consumption and re-creation by end users. They feature repositories, library systems, curriculum frameworks, curriculum systems, curriculum exemplars and resource assemblers.

A LCMS enables:

  • Efficient search and retrieval
  • Ease of authoring across a learning community
  • Rapid customisation for various audiences

An LCMS should enable seamless collaboration between subject matter experts, designers, teachers, and learners. It should enable content to be made available through a wide array of output types – such as structured e-learning courses, lesson plans, single learning objects – and output devices such as PC, phone or TV.

Learning Content Management Systems differ significantly from Learning Management Systems (LMS) in as much as an LCMS should be used to “feed” content to one or more LMS.

Figure 3. LCMS feeds learning content to LMS

Key LCMS Functions

Based on the Association of Information and Image Management’s specifications, a Learning Content Management System should have the following features and functions:

Categorization/Taxonomy

A taxonomy provides a formal structure for information, based on the specific needs of a schooling system. Categorization tools automate the placement of content (learning objects, documents, images, email, text etc) for future retrieval based on the taxonomy. A key question is who is responsible for and allowed to categorise content, and edit the categorisation data?

Indexing

Additional meta-data supporting information retrieval – this can be based on keywords or full-text.

Document Management

Document management technology helps organisations better manage the creation, revision, approval, and consumption of documents used in the learning process. It provides key features such as library services, document profiling, searching, check-in, check-out, version control, revision history, and document security.

Web Content Management

This addresses the content creation, review, approval, and publishing processes of Web-based content. Key features include creation and authoring tools, input and presentation template design and management, content re-use management, and publishing capabilities.

Digital Asset Management (DAM)

Similar in functionality to document management, DAM is focused on the storage, tracking, and use of rich media documents (video, logos, images, etc.). Digital assets typically have high intellectual property (IP) value.

Repositories

A repository can be a sophisticated system that costs hundreds of thousands of dollars, or a simple file folder system. The key is to have information that can be found once it is placed in the system.

Syndication

Distribution of content for reuse and integration into other content.

Personalization

Based upon data about student learning history, their learning styles and what they next need to learn, types of content and specific learning objects can delivered to best match the student’s needs.

Search/Retrieval

One of the greatest benefits of a well architected LCMS is the ability to get out what you put in with the minimum of effort. Indexing; taxonomy; repository services; relevance; and social cues should make locating specific content in a schooling system easy. Search functions should include:

  • Best Bets
  • Metadata-based Refinement
  • People and Expertise Search
  • Recently Authored Content
  • Defined Scopes
  • Focused Search – site, local, enterprise and web
  • Taxonomy and Term Store Integration
  • View in Browser

Infrastructure Technologies

Supporting these functions are core infrastructure technologies including:

  • Storage
  • Content Integration
  • Migration
  • Backup/Recovery

DRM

Protecting copyrighted content is essential to drive a vibrant “Content Economy”. Ensuring that creators of content get what they deserve for their work is a cornerstone of the Knowledge Economy – the development of which is the aim of many governments. DRM does this by encrypting content to limit usage and copying to limits agreed between the publisher and the customer.

EXPOSING CONTENT

Producing content and storing it is relatively easy, but organizing it to make it easy to find is an altogether different matter. People in large enterprises spend huge amounts of time looking for content, and making it easier to find specific content in schooling systems is core to making them more effective.

Search can help, of course, but the key to making content easy to find is in structuring it well. There is no one right answer for this, but one way of thinking about it is to start by categorising people first and then categorising the content:

Communities

Ideally, content should be exposed to people according to what role they have in the organisation – this is known as “role-based” knowledge architecture. A teacher, for example, should be able to access different content to learners.

Sites

Once communities of users have been defined, sites can be created to serve their specific content needs. Sites are aggregation points for a mix of types of content and methods for surfacing this content.

Libraries

Within a site there can be several libraries, each one categorising content by subject, topic, phase of learning, etc. Categorised content should contain metadata making it easier to find what the user is looking for.

Galleries

For more visual content, it may be easier to flick through a set of images for the user to find what they are looking for – galleries provide this function.

Wikis

A wiki is a website that allows the collaborative creation and editing of interlinked web pages via a browser. This technology has been around for at least 15 years, but its use as a general teaching tool is still in its infancy. However, an increasing number of universities are now adopting them as a teaching tool – see http://www.nytimes.com/2011/05/02/education/02iht-educSide.html?ref=education.

Blogs

Personal spaces for building and publishing content such as blogs or “MySites” give users a way of quickly exposing their thinking to a wider audience to express viewpoints and get feedback.

Figure 4. Structuring content starts with classifying users

LEARNING CONTENT MANAGEMENT ARCHITECTURES

Key Concepts

Roles

A key starting point in architecting a LCMS is determining who the users of the system are and what roles can be assigned to them.

Across the schooling enterprise publishing house staff, experts, teachers, teaching assistants, administrators, students, even parents could all – in theory at least – take on one or more of these roles:

  • Creator – responsible for creating and editing content.
  • Editor – responsible for tuning the content message and the style of delivery, including translation and localisation.
  • Publisher – responsible for releasing the content for use.
  • Administrator – responsible for managing access permissions to folders and files, usually accomplished by assigning access rights to user groups or roles. Admins may also assist and support users in various ways.
  • Consumer, viewer or guest – the person who uses the content after it is published or shared.

Questions raised by the SULINET experience, suggest the following considerations:

  • Who is the principle audience – teachers, students, parents?
  • Who can publish – teachers, students, parents, experts, 3rd party publishers?
  • What incentives are there to encourage contributions?
  • How will Quality Assurance work?
  • What about peer review/rating systems?
  • Should all contributors be allowed to create, publish or edit a Learning Object?
  • Who is the legal owner of a Learning Object – teacher, school, and district?
  • How will logical groupings work? Is it possible/desirable to have national level admin and users, or should groupings work at lower levels such as:
    • District or conglomerate of schools
    • Individual School
    • Grade levels (Eg Year 10)
    • Subject areas (Eg Maths)

Standards

Another key consideration is the role of standards. There are many standards covering content, and the following are the key standards specifically designed for learning content:

SCORM – Sharable Content Object Reference Model – is a collection of standards and specifications for learning objects (Shareable Content Objects, or SCOs). It defines communications between learning objects and a host learning management system. SCORM also defines how content can be packaged into a transferable ZIP file called “Package Interchange Format”. SCORM defines:

  • Content Aggregation Model
  • Runtime Environment
  • Sequencing & Navigation

IMS Global Learning Consortium is concerned with establishing interoperability for learning systems and learning content. IMS publishes specifications for content packaging, enterprise services and digital repositories.

Dublin Core. Defined by the International Organization for Standardization (ISO) The Dublin Core provides metadata descriptions for most learning resources – digital and physical – so they can be described and catalogued. Implementations of Dublin Core typically make use of XML.

CDN

A content delivery network or content distribution network (CDN) caches data at various nodes of a network. A CDN can improve access to the data it caches by increasing access bandwidth and redundancy and reducing access latency. Data content types often cached in CDNs include web objects, downloadable objects, applications, realtime media streams, and database queries.

Blobs

A blob (alternately known as a binary large object, basic large object, BLOB, or BLOb) is a collection of binary data stored as a single entity in a database management system. Blobs are typically images, audio or other multimedia objects, though sometimes binary executable code is stored as a blob.

Scenarios

In the simplest model, the “industrial schooling” approach of pushing book based content into the “empty minds” of learners is digitized:

1. Government sets the curriculum

2. Publishers convert curriculum into content

3. Schools buy content

4. Teacher delivers content

5. Students receive content

Figure 5. Top down approach has limited effectiveness

The SULINET example featured earlier in this blog offers a more sophisticated, “connected learning community” approach. Here, reusable combinations of learning units are stored in a central database. Classification, and the use of metadata and sophisticated enterprise search, makes it easy for users to locate and retrieve content. The smallest digital objects can be independently used or combined together to form learning objects. A curriculum editor application enables users to develop their own learning content.

Extending this further still, in the model below the central repository is connected to external content publishers, online content market places and the worldwide web.  It exploits Cloud technology to drive out infrastructure and management costs; enable flexible scale; and increase reliability and speed.

1. Publishers research and develop new learning packages and make these available for different learning styles

2. Teachers look for materials for specific learning opportunities, and assemble objects into packages for students

3. Teacher assigns learning packages to students

4. Students work in teams to create new content from learning packages

5. Students submits assignment to teacher

6. The best new content from teachers and students gets added to content repository

7. The repository receives content through online market places and the web

8. Standards and processes are overseen by curriculum content committee which uses data to make editorial decisions

Figure 6. An integrated “learning content economy”

Conceptual Design

Converting this usage scenario into a high level conceptual design, we can break down the key processes into three chunks – Creation; Management and Consumption. As discussed at the outset, however Consumption and Creation should increasingly be seen as part of the same process – ie learning is part-consuming and part-producing content.

Figure 7. Conceptual design for a Cloud based Learning Content Management System

Key Products

Creation

Technologies such as Expressions, Visual Studio, and the Adobe Creative Suite are used extensively by professional content developers. DreamSpark is enabling a growing number of students to produce professional quality content too.

Management

Windows and SQL Azure

In the above Schooling Enterprise Architecture Learning Content Management model the core Cloud based content management technologies are Windows and SQL Azure, and the following features are exploited:

  • Compute is a service which runs managed applications in an Internet-scale hosting environment.
  • Storage stores data including blobs – large binary objects, such as videos and images.
  • AppFabric manages users’ permissions and authenticated use of web applications and services, integrated with Active Directory and web based identity systems including Windows Live ID, Google, Yahoo! and Facebook.
  • Content Delivery Network – places copies of web objects (images and scripts), downloadable objects (media files, software, and documents), applications, real time media streams, and other components, close to users. This results, for example, in the smooth streaming of video to Silverlight and Android clients without requiring any software development, management or configuration.

Figure 8. Windows Azure CDN speeds up delivery of content

  • Marketplace – data, imagery, and real-time web services from leading commercial data providers and authoritative public data sources. The Windows Azure Data Marketplace will also contain demographic, environmental, weather and financial datasets. An Application Marketplace will enable developers to easily build applications for Azure.

SQL Azure can also be exploited to provide the following services:

  • Database relational database, providing services to multiple organisations.
  • Data Sync – synchronisation between an organisation’s current SQL on-premises databases and SQL Azure Databases in the Cloud.
  • Reporting – a complete reporting infrastructure that enables users to see reports with visualizations such as maps, charts, gauges, sparklines etc.

Live@Edu

Live@Edu provides a suite of communication, collaboration and storage services for students. It also provides a single account and password for access to many Microsoft Cloud services including Windows Azure. Later this year, Live@Edu will be superseded by Office 365 for Education.

SharePoint Online

SharePoint Online offers a core set of Content Management capabilities including:

  • Document Management
  • Collaboration (team sites), Extranet
  • People Search
  • Content Search
  • Social Computing – including wikis and blogs
  • Publishing Portal (custom theming/branding)
  • Rich Media Management
  • Data Visualization
  • Workflows

 

Figure 9. Through SharePoint, end users get a “control panel” for consuming and creating learning content

Through the SharePoint portal, end users can quickly find the learning content they need, consume and create new content with others, and publish this to a wider connected learning community.

Consumption (and recreation)

Silverlight

Silverlight is a great way for learners to experience learning content. A free, cross-platform browser plug-in, Silverlight is designed for Web, desktop, and mobile applications – online and offline. It supports multimedia, enhanced animation, webcam, microphone, and printing.

Microsoft Learning Content Development System (LCDS)

LCDS is a free tool that enables users to create interactive, online courses and Silverlight learning objects. It can be used to create highly customized content, interactive activities, quizzes, games, assessments, animations, demos, and other multimedia.

Office

PowerPoint is the most widely used content creation tool in schools, and many schools create highly interactive and challenging content with it, eg: see this archive at the University of North Carolina Wilmington

MediaWiki extension for Word allows learning materials developed in Microsoft Office to be saved directly to MediaWiki-based repositories such as WikiEducator.

To create SCORM objects with relatively low levels of technical skill, Hunterstone’s Thesis “Light” is available as a free download with Learning Essentials for integration into Microsoft Office for easy application of the (SCORM) learning content standards to Office documents.

OneNote

Whilst designed as a personal productivity application, OneNote isn’t an Enterprise wide content management solution – however used in the right way, it can be a quick and cost effective way to enable content development, management, search and retrieval amongst small, distributed groups. For example, a teacher could have a “master” OneNote file held on a Windows Live SkyDrive site (in the Cloud). This can contain several “books”, each book sub divided into classes with learning content – videos, links, text etc. Each class can then be further subdivided with an area for each learner. In this way, a Science class – students and teacher, for example, can collaborate with Science classes in other schools.

 

Figure 10. OneNote enables small-scale learning content management

Looking to the Future

HTML 5

The next version of HTML – a language for structuring and presenting content for the World Wide Web – will have profound implications for how learning content can be consumed. It will encourage more interoperable learning content solutions, and will make it easier to include and handle multimedia and graphical content on the web without having to resort to proprietary plugins and APIs.

Conclusion

Providing students with the right kind of learning content at scale is a critical component in making schooling more effective. It’s no longer sufficient to think of content systems as delivery mechanisms, rather they should be thought of as integrated “learning content economies” where learning value is added by all participants and stakeholders. Cloud computing can help facilitate this new approach, driving down costs, increasing connectivity and collaboration, and enabling scalable, flexible and highly available learning content management systems to emerge.

Thanks to David Langridge, Brad Tipp and Sven Reinhardt for support in writing this article.

How to Connect a Learning Community – Israeli Municipalities Show the Way

The challenge for the Israeli city of Ramat Gan was how to build a platform to connect students, parents, teachers and external experts – and deliver a set of learning services to enable students to go from mememorizing content to building analytical and synthesis skills. Ramat Gan, well known for international high tech businesses, also needed a sytem to enable students to aquire in-demand high level technology skills.

The solution – a “Learning Gateway” based on SharePoint 2010 and Live@Edu – delivers a spectrum of communication and collaboration tools, learing content, and applications.

Watch the video here:

Further north a different set of needs resulted in a similar solution being developed. Schooling for 50,000 K-12 students students in the city of Haifa was being distrupted by conflict, so a way to ensure continuity of schooling services had to be found.  The answer, again, was a Learning Gateway solution that delivers a range of learning services to all students in the city, regardless of whether they are working from home or in school.

Watch the video here:

Thanks to Bar Israeli.

Saving Money Whilst Raising Standards – West Hatch Show You How

How lucky am I to be able to send my children to an excellent state school on the outskirts of London? Apart from having an Olympic Gold medalist, a Turner Prize winning artist, and a BBC newsreader amongst its alumni, West Hatch High School has now acquired an international reputation for its work in ICT. The school has just become a “Microsoft Innovative School” – partly due to the technical excellence of IT Manager, Alan Richards, and the smart investments in ICT made by Headteacher Frances Howarth and the Board of Governors.

Despite being able to offer IT Academy courses to the community for many years, it wasn’t until 2008 and with the arrival of Alan, that West Hatch started to optimise its infrastructure. Until then West Hatch’s 1300 students and staff had no guarantee of their network’s reliability, which meant it was underused. As Alan says: “Teachers will try things two or three times, but after that, if a lesson’s wrecked, they won’t risk it again.”

Alan joined the school with a track record of moving schools from failing ICT systems to state of the art facilities. His starting point was to rebuild the whole school network with new fibre-optic and network cabling and a managed wireless solution. The next step was to replace 24 servers of varying ages, and it was at this point that the decision to virtualise was made.

What is Virtualisation?

A school network will usually have one server for each major IT service function, such as the Management Information System (MIS), Learning Management Systems (LMS), accounts, printing, and library systems etc. When a system is virtualised, these physical servers are replaced with virtual servers that are housed in clusters on a smaller number of physical servers. This has significant benefits in terms of savings, efficiency and reliability. The number of physical servers needed to effectively run the West Hatch’s network shrank from 24 to 9, and virtualisation increased efficiency of the network whilst saving $18,000 a year in hardware, maintenance and electricity.

Virtualisation provides the system with the ability to deal seamlessly with the failure of a server by automatically moving all its services to another – the rest of the school wouldn’t even know it’s happened. “Our staff have confidence in the use of ICT now. They know they can go into a classroom, turn on the computer, and have the applications they need for their lesson up and running in seconds,”

The key technology that enabled this to happen is Microsoft Hyper-V Server, and Alan and the team also used Microsoft Network Monitor in and beyond the pilot phase to ensure effective resource planning. Server technology is predominantly Windows Server 2008. A detailed case study is available here – West Hatch_Virtualisation_Case_Study. West Hatch uses Application Virtualisation, as well as Hardware (or physical) Virtualisation described above. For a detailed description from Alan on how he virtualised applications using Microsoft App-V click here.

Towards the Paperless School

With a solid network foundation in place, the next challenge for Alan was to build a portal. Having been the first school in Europe to deploy Windows 7 across its network, West Hatch was also the first school in the UK to build a portal on SharePoint 2010. This has enabled students, staff, parents and the wider community to benefit from a wealth of information and learning resources.

But the SharePoint 2010 sites goes way beyond just providing information. It is now being used to reduce printing and postage costs. It is estimated that 1.5 million sheets of paper are used per year at West Hatch – the paper, toner, photocopier rental and staffing costs associated with this paper “blizzard” are phenomenal.

A major step forward for Alan was converting Academic Review day from a paper-intensive activity to a paper-less activity. Academic review is when all students and parents attended interviews with teacher. Prior to the use of SharePoint, this process involved completion of paper forms. Now forms are managed electronically and copies of agreed academic targets are emailed to the students and parents. 

Alan has a passion for providing every student with the facilities they need to achieve the best they can. Best of all, Alan openly shares his knowledge in his wonderful blog – Education Technology Now. Needless to say, Alan’s presentation this year at BETT on using ICT to save money whilst raising standards was a big hit!

An Innovative School

In February 2011, West Hatch announced that they had been accepted into the Microsoft Innovative School network. Benefitting from:

  • Access to virtual and in-person training from Microsoft and renowned education experts from around the world
  • Support for professional development
  • Access to the global Innovative Schools community 

And finally, I can’t resist it – here’s a picture from my daughter – a Yr 10 student in West Hatch. Produced on OneNote on a Tablet PC, this was synchronised between my computer and her computer using the automatic synchronisation between OneNote and SkyDrive.