BYOD / BYOC?

The question of “Bring Your Own Device” (BYOD) is dividing opinion across the world of Ed Tech – and increasing scrutiny over how schooling budgets are spent is fuelling the debate. In essence, BYOD is about letting students bring their own devices – from mobile phones to full blown laptop PCs – into school as part of formal learning. Regardless of whether this approach is right or wrong, increasing numbers of schools – particularly in the United States – are adopting this approach.

In the US, BYOD is often seen as a strategy for schools to do more with less. EdWeek reported that one US State paid $56k in repairs for the computers they lease for $175k annually, so it’s easy to see how BYOD can seem an obvious approach for some. However, shifting the ownership of devices has many complex implications for how schooling systems operate. BYOD has complex and hidden costs which need to be considered carefully.

This article sets out the arguments for and against BYOD, highlights key considerations and proposes some potential ways forward.

What is BYOD?

In adopting BYOD, schooling is following a broader trend in the world of business. Monica Basso, Research VP at Gartner, predicts that by 2014 “90% of organizations will support corporate applications on personal devices.” At companies like Kraft Foods, rather than providing some employees with a standard laptop configuration, money is offered to let staff go out and get what they want.

Delloite observes that “most [business] users strongly believe they should be allowed to install any mobile application, visit any mobile website, and store any personal data they want on their personal device regardless of who paid for it”.

According to Forbes, reported on Yahoo, the adoption of technologies in the enterprise is increasingly being driven by consumer preference, not corporate initiative. “Many organizations are considering allowing personally-owned mobile devices to access business applications in order to drive employee satisfaction and productivity, while reducing their mobile expenses”.

In schooling, BYOD has different goal – it’s about enabling students and teachers to bring their own devices into school to support formal learning and productivity.

Why Should BYOD Be Considered?

From just a utility perspective, BYOD makes perfect sense. Why have a computer gather dust in the student’s bedroom while they are in school, and why have a school computer gathering dust in the 85% of time that students are not in school? Consolidating two resources into one has great potential for cost savings. Where the number of computers in a school is low, BYOD can be a quick way to boost access levels.

BYOD saves the school having to buy all the children a device, allowing school funds to be focused on providing access to the less well-off pupils.

Cary Harrod writing on the AALF blog –

“We launched our BYOL program this past January with our 7th graders. It was an overwhelming success in several key ways:

Out of 559 7th graders, we had 353 students bring in their own laptop, netbook or tablet pc. Add that to the 160 district owned devices and it’s easy to see that one of our major goals was met…to increase access to technology for ALL 7th graders… we successfully increased access to students who were unable/unwilling to purchase their own device access to technology without the barrier of having to check out a cart of laptops”.

Carry’s school didn’t’ service the computers either. “It was made clear to the parents that they owned the device… it was no different to when I take my device to Starbucks; Starbucks does not assume responsibility for my device…I do”.

Carry’s school is teaching their students “how to select the best computer and the most appropriate tools for their individual needs” and “through intensive professional development “we were able to move our teachers towards a student-centered way”

Why not BYOD?

Not everyone supports the BYOD concept. In fact, many people do not. Jim Wynn, former Headteacher and now senior Director at Promethean doesn’t believe BYOD is a viable concept for the classroom yet.

Imagine the possibility of 25 students walking into a classroom with what could amount to 25 different devices – with a teacher who is afraid of computers! Imagine the kinds of things that teachers could potentially hear in a BYOD environment:

“Miss, how can I get my phone to see the Wi-Fi”

“Sir, my battery has run out”

“Sir, a big boy put my computer in the bin”

Even the most advanced adult technology users frequently suffer from common technical issues such as getting Bluetooth devices to connect, so letting students loose across a range of technologies during classes is a recipie for potential chaos.

There are other factors to consider too:

  • The most commonly owned mobile device is mobile phones. Not everyone has got a phone that is powerful enough to enable high quality research, homework, coursework, revision, etc
  • Variation in the different types of student-owned devices, from Blackberries to i-Pads to Laptops, may make it hard for teachers to run lessons where they may want all the students to undertake the same tasks
  • Health & safety liability and requirement for all devices to be tested for suitability for use in a schooling environment

Gary Stager writing in AALF news asks “BYOD – Worst Idea of the 21st Century?” and says that BOYD:

  • Enshrines inequity
  • Narrows the learning process to information access and chat
  • Increases teacher anxiety
  • Diminishes the otherwise enormous potential of educational computing to the weakest “device” in the room
  • Contributes to the growing narrative that education is not worthy of investment

“Of course teachers should welcome any object, device, book or idea a student brings to class that contributes to the learning process. However, BYOD is bad policy that constrains student creativity, limits learning opportunities and will lead to less support for public education in the future”.

Towards BYOC

Gary Stager, asks “when was the last time you walked into a computer store and said, “I’d like to buy a device please?” Nobody does that. You buy a computer….. BYOD simplistically creates false equivalencies between any object that happens to use electricity… Repeat after me! Cell phones are not computers! They may both contain microprocessors and batteries, but as of today, their functionality is quite different”.

“Kids need a personal computer capable of doing anything you imagine they should be able to do, plus leave plenty of room for growth and childlike ingenuity”.

Whilst Cloud computing and HTML 5 will make the type of computer that you are using less important in the longer run, let’s be clear – effective learning with and through technology requires that students have computers. Ultimately, we want students to produce content – not just consume it – and develop their own learning experiences.

Ideally, every student should have their own computer for use both in and out of school. There will be many places where this just isn’t practical for all students, so in these cases there should be an appropriate progression towards increasingly available and increasingly powerful computing, so by the time a student leaves school, they are fully IT literate and ready to enter the university or the jobs market with a computer that they know how to use, and with a portfolio of high quality materials, applications and resources – online and on their hard-drive.

“Hybrid BYOC”

Clearly, BYOD or even BYOC as a blanket approach in any schooling system is going to be problematic.

Bruce Dixon again – “We are most likely going to see a gradual shift of the responsibility for the provision of a personal portable computer for our students from schools to families, as costs come down further, and computers are commoditized even more. But it will take time for the most effective funding, implementation and management models to be developed, and I expect they will, for the most part, be blended models”.

According to the e-learning Foundation, “In some areas all the pupils might have a suitable device they can bring in, so there’s no stigma attached to those who don’t have their own”.

There’s a crucial point here – BYOC may work in some areas – particularly where consumer technology usage amongst students is high and consistent. In other areas BYOC may not work at all because of a lack of appropriate devices in the hands of students.

There is no need to think of BYOC as a “blanket” approach at single school level either. E.g. at West Hatch School, London, just those students between 16 and 18 years old who have elected to stay at school for an extra two years can bring their own computers to school and access school resources.

Practical Considerations

Whether BYOC is the right approach or not, there is an increasing number of schooling systems under extreme budget pressures so there’s a practical reality that has to be addressed right now.

For those schools wishing to consider BYOC, an understanding of complex issues such as trust and liability is essential.

Trust

Which users do I trust with which data and applications and under what circumstances? Every organization should have its data classified in terms of who has access to it. However, BYOC adds another layer of complexity to the trust models because BYOC computers are not locked down as tightly as school owned computers, so can easily fall in and out of compliance.

Acceptable Use Policies will vary, and user expectations will differ. On school owned devices, users may accept not being able to use social networking apps, but that type of policy is unacceptable for personal devices.

West Hatch gets around this problem for student-owned devices, to an extent at least, by using a role based portal. Alan Richards – “the only reason this [BYOC] works is the fact that all resource are available through SharePoint, so as well as shared documents they can access their email, home drives, media etc”.

Liability

Whilst schools should have risk assessments covering actions such as unsecured use of organizational data to accessing inappropriate applications or websites, BYOC introduces new complexities:

  • Different protections may be required on different devices, depending on type of device and the OS that they run on.
  • A teacher or student who brings in their own device may have the expectation that they can use it however they wish. Is inappropriate use still a liability for the school, even if it doesn’t affect its data?
  • How is liability affected when computers are partly funded by the school?
  • There is a risk – albeit a small risk perhaps – of the school accessing and damaging personal data (for example, if IT inadvertently wipes a user’s personal data or applications)

On teacher-owned computers, at least, both the trust and liability issues can be addressed in part by if end-point data encryption implemented.

Regardless of how robust and secure the IT system, every school wanting to implement BYOC should seek their own legal advice on how to frame and assess liability between BYOC and more traditional access programs.

Equity And Finance

A key risk of BYOC is increasing the digital divide, so a BYOC program would need to be combined with effective initiatives to acquire or upgrade ICT, for those students that need this, including subsidized models.

Bruce Dixon, Founder of AALF, has given advice on 1:1 access programmes for nearly 15 years – “one of the benefits from an effective 1:1 program would be to provide 24/7 access, and there is a reasonable expectation that parents should make some contribution for the 80% of the time their son or daughter could now use a laptop for personal use outside school. However, I’m not sure why we can now suddenly expect parents to pick up 100% of the cost.”

According to the “e-learning Foundation” – a trust supporting the 1:1 access initiatives in the UK -“schools will need to provide all students who cannot bring their own device into school with something suitable, otherwise the school will create a digital divide, favouring wealthier pupils”.

Beware Of Potential Unintended Consequences

Transferring the burden of purchase to the students’ parents can be a “double-edged sword”. For example, organisations in consortia have purchasing power that can potentially drive costs down when ordering large volumes of IT goods and services. Passing on the cost of PC ownership to the student reduces the volume of IT purchased by the institution and therefore reduces negotiating power. When purchasing occurs on a large enough scale, a widespread BYOC policy could potentially drive up the net cost of providing computers to those who the schooling system will still need to provide a computer to.

There could be other unintended consequences too. As Microsoft’s Edgar Ferrer Gil points out, if a school depends heavily on Flash based learning content, then a whole subset of devices will not be able to utilize those resources, so a BYOC policy in isolation could reduce the value of investments in devices, IT resources and content.

There’s a cost too in supporting different technologies. For example, in the world of business the widespread adoption of RIM Blackberry’s required an expensive Blackberry server.

Consistency

If several students have different types of software, then it will mean that teachers need to adjust to that. For instance, a teacher won’t simply be able to set up a lesson where the students collaborate using a single application or service. Imagine the scenario when an LMS won’t accept certain file formats leaving students to figure out how to turn in their assignments if its not in the correct file format.

If a BYOD or BYOC implementation allows any device to be brought in, then the organization can expect to see old, second-hand and possibly even stolen devices – which pose legal, and security risks from viruses or malware.

Edgar Ferrer Gil again – “Schools need to think carefully what BYOC means to them. There are things that are going to run fantastically well on the right kind of device – eg standards-based cloud services, internet connectivity, file sharing and in some cases virtualized desktops. But today, I think that the ROI of a fully-open BYOC policy will be extremely poor”.

IT System Architecture

BYOC can quickly lead to 1:1 access ratios, and this has significant implications for infrastructure and IT services –

Physical Environment

Cleary, having appropriate furniture, benching, electrical sockets for charging and extensive wireless access points, is a key first step. It’s also important to provide secure lockers for storage of computers when not in use.

Network

As device choice becomes fluid, confirming identity of user and device, usually through the use of certificates, becomes more important.

Proxy servers are required to present login requests to users when using their own computers in the same way as you would filter usage for students using a school-owned computer.

At West Hatch, all routes for external traffic from the school’s data switches point to a Smoothwall box which deals with proxying. Computers that are on the school domain point to the same box but to a specific port. Computers that students bring into the school don’t point to a port and are captured by Smoothwall, which presents the user with an SSL login page asking for their domain credentials. This gives the same kind of user experience as you would get when using an Internet connection in a hotel or public space. At West Hatch, this approach works across any device or OS.

Optimised Core Infrastructure

Managing the extra workloads that a BYOC program would place on a school’s IT infrastructure requires that the infrastructure is optimized – ie made more robust and secure. Infrastructure Optimisation is a program that should be applied to the school IT infrastructure if BYOC is being implemented.

Key elements covered in Core Infrastructure optimization include:

  • Client Services
    • Management
    • Security
  • Identity & Security Management
  • IT Process & Compliance

Another key technical consideration is support. Whilst, as already discussed, some schools are passing-off technical support to parents, the danger with this approach is inequity – some students will have to wait longer than others for their computers to be up and running. On the other hand, it’s completely unreasonable to expect schools to be able to support just about any device on the market.

The only realistic way around this is to have a BYOC policy that narrows the range of computers accepted in the school environment to reflect capacity of local support services – both inside and beyond the school. In other words, if neither the school nor local computer repair shop can support a particular Operating System or computer, it’s best not to include these in the BYOC policy.

Remote Desktop Services (RDS, formerly Terminal Services)

Working with mixed computers in a classroom can be made a lot easier if schools were able to “push” desktops to those computers. In other words, regardless of computer type or its Operating System, the student would get a desktop provided by the school. Such a desktop could contain a full range of applications and resources needed to cover the curriculum. As the desktops would be delivered from a Server, the only requirement on the device would be a browser and possibly a small client application.

The first and easiest way to do this is through Presentation Virtualization, which was covered in detail in the “From Virtualization to Private Cloud” article. A relatively straightforward way to deliver Presentation Virtualization is Windows Remote Desktop Services (RDS).

RDS applications run in Virtual Sessions, each projecting a Windows user interface to a remote client computer. For non-Windows computers, a Citrix client application can be installed and this will allow the same user experience as with a Windows device. (There are also 3rd party RDP clients available for slates and phones). In a Remote Desktop Session, the device processes only screen refreshes sent from the server, and mouse clicks and keyboard strokes are being sent back to server. Whilst users will get a Windows interface, it won’t be a Windows 7 interface. Administrators should be careful not to assign administration rights to RDS users.

Virtual Desktop Interface

VDI offers a more sophisticated approach to remote desktops. From the client device perspective much is the same as with RDS, but there is added sophistication on the server which gives additional scope for flexibility.

With VDI, sessions are delivered through Virtual Machines run within a Hypervisor such as Hyper-V. Each virtual machine can contain a different Operating System and a different set of applications. This allows school to offer each student has their own specific desktop, subject/topic specific desktops. As each virtual machine (VM) runs in its own environment trust relationships are easier to manage. Each VM is a file enabling easy backup and portability. The entire desktop “estate” can be run through a management product such as System Center.

West Hatch School is evaluating VDI, looking at it eventually as a web-based resource for access beyond the school gates.

Classroom orchestration

Ideally, a teacher would not only be able to push out a common virtualized desktop, but orchestrate a class too. This means having control over the computers whilst they are in the classroom. For BYOC schemes that stipulate bringing in Windows devices, Multipoint server can be used to combine old and new school-owned computers with student owned computers in a single, orchestrated network.

Conclusion

The net is that BYOC is really not the silver bullet to widespread access that it appears on the surface. The argument that IT can’t be funded is a not a budget question – it’s a prioritization question! BYOC won’t come free – it will require investment, and as always, the most important question to ask with any IT investment is “what outcome do you want?”

Bruce Dixon, writing in the AALF blog, observes – “Seems the last thing anyone wants to ask is, ‘What will they want to do with it?’”

Full BYOC, partial or no BYOC at all, it makes no sense to decide on an approach without first being crystal clear about what results or impacts are wanted.

Once the intended learning and operational outcomes are clear, Schooling Enterprise Architecture offers a formal process for developing impactful learning solutions. Whether BYOC is an appropriate approach or not depends entirely whether it fits with higher level organizational goals, circumstances and capacity. BYOC, ultimately, should be part of the process of simplifying ICT, and if adopted at all, it should be very carefully thought through.

Thanks to:

Sven Reinhardt, Edgar Ferrer Gil, Dan MacFetridge, Erik Goldenberg, Bruce Dixon, Jim Wynn, and Alan Richards for contributions to this article; and to Brad Tipp/Howard Gold for graphics.

Putting the “i” into Singapore Schooling

With top rankings in PISA and TIMMS, Singapore is the envy of many schooling systems around the world. Whilst ICT is just one of a range of factors that affect learning outcomes, it is a key tool for meeting at least two of the four key desired outcomes of the Singapore schooling system – for all students to become self-directed and collaborative learners.

Singapore was one of the first countries in the world to have a national strategy for ICT in Schools. A succession of well-planned, funded and executed programmes focussing initially on infrastructure and training, and more recently focussing on self-directed learning – has driven effective use of ICT. For details of Singapore’s main ICT projects, see http://wp.me/P16Iyp-46

A great showcase for the effectiveness of this investment is Crescent Girls’ School, a member of the “Future School” programme, and recently awarded the status of Mentor School by Microsoft. Crescent also hosted the CRADLE conference on 1st – 3rd August.

On the surface, Crescent could be any other Secondary School, but a quick glance at the trophy cabinet next to the reception makes it clear that this school is totally committed to high performance. Crescent’s aim is to be at the forefront of harnessing technology to enhance learning outcomes. ICT is used extensively in both delivery and assessment and the school’s 1300 students each have their own Tablet PC. The goal of using ICT is to give students a degree of choice over what they learn and how they learn.

The students engage in a wide range of activities including 2D, 3D animation and robotics; multimedia production; photo-shooting and editing; and development and use of e-books. Particularly impressive is the use of Tablet PCs’ “inking” features for a range of activities including highly impressive manga artwork.

Crescent is moving towards project based learning with a series of “Integrated Secondary Curricula” programmes.

Virtual Reality is used at the school too. For example, in Geography, students experience immersive content showing erosion in a river – a concept that is much easier to grasp when viewing 3d animated rocks being swept along by the current from the perspective of the river bed.

Particularly impressive at Crescent is the way that teachers engage in the content creation process. For example, a complete suite of applications and content have been developed for the Tablet PC that not only exploits the pen and inking technologies but also address a range of different learning styles.

Taking this process further, teachers specified collaborative games to take advantage of the MultiTouch features in Windows 7 and HueLabs’ “Heumi” multitouch (Surface) devices. This means that students can now engage in a wide range of collaborative learning experiences, such as learning to write Chinese. As impressive as the technology itself is the way in which the room in which the Heumi devices are deployed. Here, in the “iCove”, strong colour coding of the devices and the seating, enable teachers to group learners according to their learning objectives.

More recently the school has introduced a biometric system that not only automatically records the students as present but takes their temperatures as they come into the school in the morning, enabling their health to be monitored.

The infrastructure that sits behind Crescent’s ICT provision is highly impressive. The infrastructure foundation is a Campus-wide wireless network with 100 Mbps Broadband. Tablet PCs are stored in steel lockers, and batteries are charged at charging stations.

Approximately 30 on-premises servers perform a range of essential back-end functions from authentication to content management. The Server infrastructure – based on a Microsoft platform – supports a rich tapestry of capabilities including:

  • i-Connect Learning Space – a role based portal for organising student’s learning and activities
  • Pearson’s Write to Learn – a system that helps “automate” the marking of essays
  • HeuX – Huelabs Classroom Management System – with lesson management, digital book library, real-time Communication and Collaboration include notes-sharing and social media; screen monitoring and broadcasting; Presence awareness; attendance; Video Conferencing
  • i-Media – content management system.
  • Interactive books

These solutions are supported by Windows Server; SQL Server; Microsoft SharePoint Portal Server; System Center; Live Communications Manager; Hyper-V and Live@Edu. Much of the learning that takes place at Crescent happens after school hours, and the Virtual Private Network enables students to have 24×7 access. It’s not uncommon to see the portal being used by students at home at 2.00AM.

Singapore schools benefit from very high quality teachers (only 10% of applicants get admitted into teacher training). This is reflected in the staff at Crescent. Principal, Mrs Eugenia Lim, supported by Chief Technology Architect for Learning, Mr Lee Boon Keng, have a highly structured and team orientated approach, underpinned by a strong focus on continuous professional development.

Every hour, the chimes of Big Ben ring across the school signifying a change of lesson. As with Cornwallis School in Kent in the UK, I was totally inspired by what I saw at Crescent but couldn’t help wondering whether a shift from time-based to a performance-based model would better fit such a technology rich approach to learning. Nonetheless, Crescent’s use of ICT is without doubt world leading.

Whilst Crescent Girls’ School is clearly a leader amongst leaders, it’s far from unique in Singapore in the way in which it innovates with technology. Singapore schools benefit from long term, consistent policy and investment in ICT in schooling. With their structured approaches, strong management and deep understanding of how ICT can make learning more effective, Singapore schools look set to continue to show the world how it’s done.

Fortunately for us all, Crescent Girls’ School are “giving back” by encouraging people to visit the school – both physically and virtually.

Thanks to Eugenia Lim, Lee Boon Keng and all the staff and students at Crescent Girl’s School.

Transforming Schooling in Old Buildings – “New Wine in Old Bottles”

A question that I get asked constantly is “how do we implement change in ordinary ‘factory schooling’ buildings”? Last week I was fortunate enough to be able to visit the Cornwallis Academy in Kent in the UK where they are part way through transforming out of the factory schooling model into something much more effective.

Whilst, clearly, there are significant differences between schooling systems in the UK and in other parts of the world, there are many lessons from Cornwallis that are applicable in most countries.

Cornwallis Academy is a large mixed secondary school with 1600 students and is part of a consortium of schools called Future Schools Trust, headed by Chris Gerry.

Results in Cornwallis have improved 16% since 2008 – but the ambitions of Chris, David Simons (Cornwallis’ Principal) and the staff go way beyond getting good academic qualifications. The aim of Cornwallis Academy is for their students to grow up to be happy, fulfilled citizens who can support themselves and contribute to society.

The main drivers for change at Cornwallis were:

  • Developing a work model for students and staff that is representative of the world outside the school
  • Building a team model to share good teaching practice rather than the traditional model of the ‘lonely ‘artisan’ teacher’ 
  • Developing a wider skill set such as social and 21st century skills that are relevant in modern world

These were all built around a relationship driven culture where pupils are part of the learning experience – not just recipients with the teachers in total command of the learning.

‘Attainment’ (i.e. learning performance) and ‘Wellbeing’ are the two main agendas that are used to ensure that students are successful.

  • The ‘Attainment’ agenda aims for 100% pass rate in examinations
  • The ‘Wellbeing’ agenda focuses on emotional intelligence and risk reduction, and recognises that social development helps drive academic success 

An economic model underpins management decisions across the Future Schools Trust consortium. In other words, managing costs and maximising effectiveness of spend are the key management drivers. Through the lense of economics, management at Cornwallis pull three main levers simultaneously:

People

A key aim is to develop more creative teachers through a more modern work environment that breaks the link with traditional approaches and attitudes.

Teachers are required to work in small groups and have choices about how they manage their work.

The school’s management can provide detailed guidance to teachers within this environment if they need to.

They are designing systems that feedback information on performance to both pupils and teachers, and compare performance with averages. Exposing the data in an open way provides “nudges” to performance. There is a focus on improving lesson quality and continuously collecting data on how well pupils are learning.

The school runs a 6 weekly reporting schedule that includes reporting on the development of “soft skills”.  Teaching teams are continuously collecting and reporting lesson data.

Space

Much work has been done to remodel learning spaces within existing buildings and within constrained budgets. Much of this has involved knocking down walls to create bigger spaces and painting – low-budget activities. The aims were to:

  • Impact mood positively
  • Foster group work
  • Provide more space than conventional classrooms
  • Allow some choice of work space
  • Embed technology

The Future Schools Trust has pioneered a new kind of learning space called the “Learning Plaza” – a large space created from knocking down walls between traditional classrooms, or using an existing large space such as an assembly hall.

 

This space was once four separate classrooms. Knocking down walls forces a transformation at relatively low cost.

According to Gerald Haigh,  a UK Education Journalist, “if we believe that transformation involves providing children with a wide range of learning opportunities, among which sitting still and listening to the teacher is one of the least important, then the concept of the ‘Learning Plaza’ immediately looks like an entirely logical solution.

There, children can consult more than one teacher. Teachers can consult each other. Children can work in groups—of any size from two to ninety—or independently, and with their technology to hand.

The figures show that the children who use the Learning Plazas are less likely to be absent from school, and much less likely to be excluded for misbehaviour”.

The Learning Plaza concept – large open spaces, and lots of technology, give staff and students room for creativity and collaboration

A key Change Management principle is “Test Bed Areas”, and through trialling Learning Plazas concept they found that it is 20% cheaper to build schools based on the plaza concept – for a start, there is less brick and mortar going into a new-build school using this approach.

Technology

At Cornwallis, they are not afraid to take the best ideas from the world of business, so they make great use of “Business Intelligence” – BI. This allows them to operate a model driven by measurement.  

Working closely with Microsoft partner lookred, they pioneered the use of CRM (SRM) and predictive analytics to manage student relationships.     

22 different risk areas are identified, and each student has an individual risk profile relating to likely success both at school and beyond. This enables teaching staff to make data-driven interventions, and manage risk. The system is ‘intelligent’ – over time it ‘learns’ which approaches have been most successful. The interventions are informed by the consortium’s work with Yale University on ‘life space’ which looks at how children make life choices and how they might influence these.

Underpinning this, Management Information Systems provide real-time information on how the school is performing.

Technology is used extensively in teaching and learning, with most of the curriculum online now and the intent to have it all online by the start of the 2011-2012 school year. Students and staff have ubiquitous access to devices, and Cornwallis was one of the first schools in the UK to make extensive use of Tablet PCs. The school also runs a “Connected Learning Community” through a Learning Gateway (SharePoint) portal, which provides all stakeholders a unified platform for communication and collaboration.

Students and staff make extensive use of technology, including a Learning Gateway portal

This smart use of technology leads to potential savings across a range of public sector services including welfare, health and law enforcement.

Looking to the Future

 

“Breaking the mould” – where there once were classrooms, there’s now a well used informal learning space, complete with coffee shop

Cornwallis will be moving into a new building in September 2011, with all the advantages of having first trialled new approaches successfully.

In recognition of the lessons that can be learned from the Cornwallis experience, this summer they will host 180 leaders from China who will be there to learn how to bring about transformational change at scale.

Key Lessons from Cornwallis

  1. Economics underpins everything. Financial autonomy is essential.
  2. Leadership training is crucial. You can have all the physical assets you like, but without clear goals and solid management nothing will happen.
  3. Create momentum, and advance on all three fronts – people, space and technology – aggressively and in parallel.
  4. Invest in Test Bed Areas – don’t implement wide scale reform without first trialling it. Start with transforming the model for a single year group.
  5. Focus on the end-user experience. It’s all about building engaging learning experiences around the student, not forcing students to fit the factory model.  

Conclusions

The result of the new approaches at Cornwallis is that learning has speeded up, to the point that the “key stages” – the time taken to progress from one segment of the UK National Curriculum to the next – can be accelerated. The staff at Cornwallis believe that their students could complete Key Stage 3 in 2 years instead of 3; external examinations (GCSE) in 1 year instead of 2; and even university courses in Year 13.  

Whilst I’m totally inspired by what I saw at Cornwallis, I think there is one crucial  piece missing from the jigsaw puzzle – a full shift from a time-based to a performance-based model. This approach is brilliantly articulated by Richard DeLorenzo from the Reinventing Schools Coalition in his book “Delivering on the Promise, and underpins the approach taken by Kunskapsskolan schools. To do this at scale will require “dynamic timetabling”, something that a number of organisations are keen to develop.

Saying that, Cornwallis offer a solid, practical and well thought through model for anyone wishing to make transformational change within hard resource and environmental constraints. What’s more, they generously share their “secret sauce” for the benefit of the wider community.

A Principal for whom I once worked told me that the best way to eat an elephant is “one chunk at a time”. Cornwallis has shown that it’s better to eat 3 chunks  – people, spaces and technology – simultaneously.

Thanks to Chris Gerry; David Simons; Claire Thompson; the staff and students at Cornwallis; Chris Poole and Matthew Woodruff of lookred; Andrew Wild of Manchester City Council; and to my Russian and CEE colleagues, Igor Balandin; Anton Shulzhenko; Alexander Pavlov and Teo Milev, who prompted the visit.

Learning to Handwrite With ICT

Handwriting is a critical skill and a fundamental building block in early schooling. Whilst some may argue that using computers diminishes handwriting skills, IT can in fact really help develop these.

To see what is possible, a great place to start is the Herbi suite of handwriting development tools.

I tried Herbi Writeabout for the Windows 7 phone – a HTC Touch – and was able to practice forming characters with my finger – to great effect.

Their Windows PC applications are terrific too – firstly Herbi Letters helps children to recognise characters through an incredibly simple game. I installed Herbi Writer on a Tablet/MultiTouch device, which enabled me to use a pen, finger or mouse to form characters – again this was presented as a simple game.

The Tablet PC opens up a range of options. For example, the Writing Input Panel on Windows 7 Tablet PCs corrects text, and gives learners the incentive to see if they can get the computer to recognise the words they are hand-writing. There are also cursive practice sheets for Word from Thefontmenu and templates from Office.com, and with a Tablet PC, students can write over the top of these. Another approach is to use OneNote, which will convert handwriting to text, providing it’s legible.

Learning how to form characters in East Asian languages can be particularly complex, but again we are seeing some interesting innovations. For exmaple, here, in Japan, 3rd grader students practice writing kanji characters. Click here for more information.

As hardware options increase, and the cost of pen-based input devices fall, we can expect to see a growing number of solutions that will help students develop and use this vital skill.