CLWB @ Bristol Technology and Engineering Academy

 

bteaIn one of our most exciting projects to-date, we are delighted to be implementing STEM at the Bristol Technology and Engineering Academy, a Centre of Excellence for teaching Science, Technology, Engineering and Maths. BTEA is a University Technical College sponsored by the likes of Rolls Royce, Airbus, Royal Navy and GKN.

Over the next year, BTEA will be adopting several of CLWB’s products and programs including:

CLWB STEM Box” – a virtual ‘sandbox’ for STEM coding activities covering each STEM subject area, including:

  • Astronomy
  • Physics
  • Biology
  • Technology
  • Engineering
  • Mathematics

ZEP Island™ – an education game which integrates STEM learning experiences

Electronics  

Games Programming  

Introduction to Coding 

In the Christmas and Eater terms we will also be running whole-school events:

  • Extreme Measures – how to measure everything!
  • Sporting Innovation – design, prototype and pitch new sport products

We very much look forward to working further with the staff and students at BTEA to develop a UK showcase for STEM.

STEM Videos for China

CLWB is delighted to announce the publication of STEM ‘Master Class’ videos for Pearson China.

Working to Pearson’s Project STEM template, CLWB created 5.5 hours worth of instructional material which is sold with Pearson’s Project STEM books in China.

CLWB worked with Park House School, and Kintbury St Mary’s CE Primary School, Berkshire, UK to create the videos.

still

The videos are being used to train teachers in China how to teach Science, Technology, Engineering and Mathematics (STEM) using Project Based Learning methods. Each demonstration covered STEM theory followed by a design & make tasks designed to develop 21st Century Skills such as how to think critically, solve problems, work in teams, and make presentations.

In all, three sets of videos were produced:

titles

Year Level

4

7

9

Project

Building a bug box

Designing Bridges

Designing a Water Purification System

Learning content

Science, Technology, Engineering, Mathematics
Practical skills, Technology, C21st Skills, Modern Careers

Topics covered include:

Science

  • Animal structures and adaptations
  • Body structures and survival needs
  • Habitats
  • Physical and chemical properties, and organisation of matter
  • Motion and Forces

Technology

  • Material technologies
  • Removing rubbish and pollution from the sea and rivers
  • Controlling Forces
  • Strength-to-Weight rations
  • Construction Principles

Engineering

  • Environmental, Chemical, Biochemical, Hydraulic, Marine and Optical Engineering
  • Engineering Design Process
  • Engineering Drawing
  • Materials and their properties
  • Distributing loads and forces

Maths

  • Measuring with the metric system
  • Trigonometry
  • Pythagoras
  • Data collection and analysis
  • Statistics

CLWB delivered a ‘360 degree solution’ covering the entire video production process from storyboarding to graphics, to subtitles.

graphics

Thanks to Lily Lv, Qi Liu, Eva Yang and all the Pearson team in China; Pete Marshman and the students of Park House School and Kintbury St Mary’s CE Primary School, Berkshire; Sam Toocaram Toller and the Bristol University ‘In House’ video crew; Roslyn Lloyd, Adrian Oldknow and Melinda Tuckfield.

 

 

Drop-out in Brazil Linked to Lack of Technology

Its been a long time since the last post – extreme workloads and travel has meant that the blog has taken a back seat. However, its back now – and this time with a much wider range of technologies and topics. In future articles I’ll be sharing my thoughts on how the surge in education technology innovation in developed countries is likely to impact on developing countries. More on that in later articles, but first a report from Brazil –

In a new report – ‘What Young People Think of Schools in Low Income Areas‘ young people complain that subjects don’t make sense, teachers are unprepared, and the curriculum does not include the use of technology.

More than 80% of the young people surveyed reported poor use of the internet to help them study – not surprising given than  less than 50% of the schools in the study had internet access. The biggest challenges are in High Schools where about 1.7 million young people between 15 and 17 years are abandoning schooling.

Angela Danemann, Director of Fundação Victor Civita explains “students will go away because they don’t see the sense in being there. Schools do not respond to their aspirations, and do not use the media with which they are familiar.” Students have to spend a lot of time copying from books.

The study also points to another problem: the lack of relevant content. Most students claim that only Portuguese and mathematics are relevant.

However, there are some schools in Brazil who are fully embracing technology, particularly in the private sector – for example Colegio Dante Alighieri caught media attention recently for their use of Scratch.

NAVENAVE in Rio is a bright, modern learning environment, deeply enriched with technology – but NAVE receives its funding through the CSR arm of a major Telco so it doesn’t represent a widely replicable solution for public schooling in Brazil.

Reforms to the entire way in which public schooling is done in Brazil needs to happen quickly. First steps should focus on the accelerated introduction of technology into schools so that children can at least get access to relevant content. Reforms to education management, import tariffs on equipment, teaching, physical spaces and funding are long overdue.

Loja

O Ensinio A Velocidade Do Pensamento, and the accompanying workshops with Planeta Educacao, were written specifically to enable transformation of Brazilian public schooling. For more information contact mike@eductechassociates.net

Memorisation or Understanding? – Erik Mazur

Think of something you are really good at – something that you excel in to the point that others would comment on just how good you are at it.

Now think about how you achieved this. What did you do to become excellent at that particular thing? Which of these best describes how you acquired your excellence:

1. Trial and error

2. Lecture

3. Practice

4. Apprenticeship

5. Other

If you picked “Practice” you will have been in the majority. If you picked “Lecture” you will have been in an extreme minority. And yet, lecturing is how most of education is “delivered”.

So starts Erik Mazur’s talk on “Memorisation or understanding – are we teaching the right thing?”

Erik Marur is a Professor of Physics and Applied Physics at Harvard University and has spent his teaching career applying scientific principles to teaching and learning. Making extensive use of data, Professor Mazur shows that much “instruction” only gives an illusion of learning as its based on memorisation, not understanding.

“I thought I was a good teacher until I discovered my students were just memorising information rather than learning to understand the material”. Professor Mazur explains how he came to the conclusion that it was his teaching that caused students to fail, and how he changed his approach with the result of significant improvements to his students’ performance.

For the full story, watch this Youtube video (fast forward to 3:02 if you want to skip the intros):

2012 – The Year of Constructive Disruption?

This article is a personal perspective of the key Education Technology trends that we can expect to see in 2012. Whilst not expecting anything as apocalyptic as the Mesoamerican Long Count Calendar theory, my belief is that the world of education technology will see new and powerful disruptive forces in 2012. Whilst there are certainly very challenging times ahead for public sector institutions and the industry that serves them, innovation is accelerating too and new technologies and approaches will offer creative solutions for those who are prepared drive, or at least accept, change.

Mark Anderseen writing in the Wall Street Journal in August 2011 proposes that “Healthcare and education are next up for fundamental software-based transformation”. Education, Anderseen contends, has historically been highly resistant to entrepreneurial change, and is now primed for ‘tipping’ by new software-centric entrepreneurs”. This article explores the forces of technological change that are priming education for ‘tipping’, and what form that ‘tipping’ could take.

Forces of Disruption

As we start 2012 we enter uncharted economic, social and political territories. Frontier Strategy Group, a Washington based provider of market intelligence, predicts that advanced economies will “muddle through the next 18 months with low growth but avoid a major recession”. Gartner, on the other hand, predicts that by 2014, “major national defaults in Europe will lead to the collapse of more than a third of European banks” – which will have significant consequence worldwide.

Gartner also predict that the control of technology is “shifting out of the hands of IT organisations… Cloud, social, mobile and information management technologies are all evolving at a pace”.

Developing markets are exerting an increasingly powerful influence too. According to Frontier, in the next 4 years, Latin America will consume more PCs than in the previous 30 years combined (276 million units). So much for the so called “post PC era”. At the same time we’re seeing the Asia/Pacific region emerge as one of world’s largest markets for devices, with an expected total market sales of more than 6.3 million tablets in 2011.

End-user expectations are rapidly changing too – “end users expect to get access to personal, work, applications and data from any device, anytime and anywhere”. Users and institutions are also demanding ever better power conservation too. The concept of “Big Data” is starting to “alter the relationship of technology to information consumption, as data coming from multiple federated sources in structured and unstructured forms must now be analysed using new methodologies”.

So what does all this mean for education technology? The first thing to consider is the fact that ICT expenditure in education in 2012 is coming off a comparatively weak platform. For at least 20 years now, IT has systematically been introduced into schooling but whilst the value of IT in education is clear, what is also clear is that education has the lowest levels of IT spending amongst any type of major enterprise – IT Spending by Industry Vertical Market, Worldwide. So are we likely to see a boost in the purchase and adoption of IT in schooling worldwide in 2012? The answer to this will depend a lot on spending on education ICT by governments.

Government Spending

According to Gartner, the current decision-making environment is dominated by demands to cut costs while improving operational efficiency and effectiveness. “Government organizations will continue to adopt technology innovation, but mostly in areas where technology is inexpensive” or “support more radical approaches to cost containment”. “By 2013, government financial sustainability will join cost containment as the top driver and constraint for government IT spending”. This isn’t a short-term trend either – “the continuing pressure to cut government budgets is likely to influence spending priorities for the next decade or more”.

Those of us wishing for a tipping point where schooling gets transformed at scale may be in for a wait. For many governments in 2012, “the key challenge will no longer be to transform, but to fulfil their statutory obligations”.

IT investments that enable transformational change “will be limited, especially by the politics of establishing budget priorities and the difficulties of institutional change”. However, these challenges and opportunities won’t be evenly spread, so let’s now look at how these forces are playing out in different parts of the world.

BRICs

Brazil – Microsoft’s Emilio Munaro says “there are more than 198,000 schools in Brazil and 98% of them now have computer labs”. “Tablet usage is growing fast, in many cases accelerated by popular touch enabled apps, but also long battery life which suits environments where electricity outlets are in short supply. However, broadband connection will remain as the challenge for Brazil in the next 3-4 years”.

Russia’s 2012-2014 budgets emphasise long-term development goals and the further introduction of ICT in schools. Expect to hear more about a significant new School of the Future project in the Moscow Region initiated by the Skolkovo Foundation.

The importance of using ICT for improving education in India has been emphasized in the policy framework for over a decade, and 2011 saw a number of large-scale device-lead initiatives. India is home to both one of the biggest IT workforces in the world, but also has incredible diversity in wealth and geography and this has lead to a wide range of solutions for both formal and informal learning. There’s every expectation that use of ICT in education will continue to grow and more innovations will emerge from India in 2012.

Meanwhile in China, mass school computerisation efforts are under way in rural Western China. “It is clear that Chinese support for the purchase of ICT infrastructure for schools will most likely increase greatly in the coming years” according to Michael Trucano from the World Bank.

Europe

The recent down-grading of credit ratings of some major European economies will mean that government borrowing in those countries will be more expensive, giving less room to manoeuvre on public spending. Whilst innovation and investment in ICT in schooling remains strong in many European countries, public sector austerity measures will inevitably cause disruption. However, one mitigating factor is that unemployment and the cost of school dropout is at the top of the agenda for many European countries, so investment in Education ICT may also be seen as a way to boost economic growth.

According to Mark East, General Manager for Microsoft’s Education Group “One thing is for sure; human capital is a nation’s greatest asset and Education will remain a priority investment area for most Governments”.

Asia

South Korea – already top of PISA and digital literacy skills tables – is surging ahead with a $2.4bn Education technology plan, now in its third phase of deployment. Many middle school and high school students now download and complete e-learning classes via their portable multimedia players as a matter of routine.

In Singapore, the government is driving technology lead innovation, and recently announced plans to digitise testing and examination systems.

USA

There’s a sense of big appetite for change in the USA, driven by a collapse in adequate levels of funding for schooling and the rapid growth in virtual schooling and online learning resources. The Department of Education is executing against a strong National Education Technology Plan and the USA is a hotbed of innovation in the education consumer space.

Teacher Shortages

The world urgently needs to recruit more than 8 million extra teachers, according to UN estimates. A worldwide shortage of primary school teachers threatens to undermine global efforts to ensure universal access to primary education by 2015.

According to the Guardian newspaper, at least 2m new teaching positions will need to be created by 2015, and an additional 6.2 million teachers will need to be recruited to maintain the current workforce.

This means that the 55m practicing teachers worldwide have increasing demands on their time as countries compete to raise education standards and develop the skills required for economic growth, at a time when the profession is short of the optimal workforce by 15%. As pointed out by Professor Sugata Mitra recently, “quality teachers simply don’t exist where they’re needed most”. “Talented teachers tend to be drawn away from relatively poor areas due to offers of better jobs or higher incomes. For these reasons, “we need new methods of learning”.

Whilst it’s clear that ICT can help governments achieve their education aims, the increased demand for teachers with ICT skills is clearly outpacing supply.

Consumerisation

Rapidly increasing availability of access to online learning sources, coupled with social networking is opening up a spectrum of low cost learning opportunities for students both inside and outside the classroom. MIT Open Courseware, Kahn Academy, University of the People, BBC Bitesize, Mymaths, Tutorhunt etc. all offer a supplement to teacher-lead “instruction”. Sugata Mitra’s “Hole in the Wall” project goes even further, offering learning where there simply are no teachers.

According to sources quoted by Larry Cuban of Stanford University, the worldwide market for self-paced eLearning products and services reached $32.1 billion in 2010 (about 50% of what formal education currently spends on ICT). The five-year compound annual growth rate (CAGR) is 9.2% and revenues will grow to $49.9 billion by 2015.

Clayton Christiansen, in his book “Disrupting Class” predicted that virtual schooling will force massive changes to formal schooling systems. By 2008, online enrolments for virtual schooling in the US had risen from 45,000 in 2000 to over 1 million, and there are no signs that this is slowing down.

A key component in consumerisation is social networking, and we’re seeing a lot of innovation in this space. For example, Microsoft’ recently announced So.cl which integrates search into the social learning experience.

Shifting Power

More Learning Please

Rising youth unemployment in Europe and the Middle East, globalisation and growth in developing countries are all fuelling the need for more knowledge, skills and competencies.

“People leaving our schooling systems, more now than ever, will need to be able to respond positively to the opportunities and challenges of the rapidly changing world in which we live and work. In particular, they need to be prepared to engage with environmental, economic, social and cultural change, including dealing with the effects of global warming and the continued globalisation of the economy and society, with new work and leisure patterns and with the rapid expansion of communication technologies.” (UK Qualifications and Curriculum Authority).

In the same way that there is limited funding available from the public purse, there is also limited time in the school day into which to squeeze the curriculum. Again, the implications are clear – more effective learning has to be implemented.

Mind the Engagement Gap

Commercial websites are increasingly become social sites, leaving a shortage of people to deal with social engagement on the scale required. The same pattern is happening in schooling where the teaching workforce does not have the capacity to deal with the explosion in the demands for skills and competencies, and the increasingly availability of online learning. As students’ technology capacity grows relative to that of teachers, an engagement gap between students and teacher is set to widen.

The answer to the engagement gap in commerce is the increasing use of “bots” and many sites now have fully or semi-automated live chat. In 2010, the average user of Facebook has 120 to 150 friends. Some of these “friends” are not real people, and many users find this to be quite natural. Gartner predicts that by 2015, 10% of your online “friends” will be nonhuman. It’s a reasonable bet that some of these online friends will be virtual tutors.

What will the answer to the engagement gap in schooling look like? Professor Sugata Mitra explores the theory that, given unrestricted and unsupervised access to the Internet, groups of children can learn almost anything on their own. Few – myself included – would advocate this as a universal approach to schooling, but it’s clear that technology enhanced independent and social learning offers answers to both the lack of teachers and the need for more effective learning.

Irresistible Forces Meet the Immovable Object

So the forces of consumerisation, increased learning requirements, and the demand for relevant ways to engage are beginning to weigh heavily on institutionalized learning.

According to Gartner, “the homogeneous learning and technology environment of the last century is fading fast. Moreover, the ivory tower mentality of education agencies is disappearing to reflect changing needs and values”.

These irresistible forces, however, will continue to meet an immovable object – schools. Whilst the nature of schooling will surely change, children will still be going to places called schools run by teachers well into the foreseeable future. Schools have responsibilities beyond academic learning. Parents and voters want schools to socialize students into community values, prepare them for civic responsibilities, and get them ready for college and career. Technology enhanced independent learning alone cannot meet those demands.

Big challenges for 2012

So the 2012 landscape will be dominated the necessity to provide more learning at less cost, against a backdrop of human capacity shortages and students faced with greater consumer choices.

Schooling IT leaders must balance the demands of supporting today’s environment, addressing the demands of the education stakeholder community, and preparing for a technology-driven transformation of the education ecosystem.

So what, then, are the big education technology challenges for 2012?  Its my belief that there are three big problems to crack, and that in 2012 market forces will drive progress in each of these areas.

1. ROI

2. Personalising Learning

3. National Education Networks

ROI

I start with ROI because in times of squeezed budgets it’s essential that both institutions and suppliers are able to identify which budget lines have the greatest and least impact on the learning “bottom line”, and identify where investments will have the most positive effect. At the very least, I’d expect it to at least become more acceptable to talk about ROI for investments in education technology. As discussed in detail in this blog – Lets Talk About Money – the idea of at least attributing “cost per unit learned” to investments should have become standard practice by now.

Personalised learning

For at least 10 years, the goal of personalized learning has been talked about, pursued as a strategy, dropped when found too hard to execute, and then talked about again. So, could 2012 be the year when personalizing learning at scale begins to take off?

I’m optimistic that we’ll see some progress in this space this year, because Personalising Learning can address so many of the problems that schooling currently faces. When we also add the learnings that we now have from games-based-learning, neuroscience and Artificial Intelligence (see Artificial Intelligence in Schooling Sytems) we seem to have all the technical building blocks in place. Personalised Learning also fits the trend towards consumerisation really well.

Think of Personalised Learning from a student’s perspective as “My Learning My Way”. To get to My Learning My Way, there are several key elements:

My technology my way

As discussed in detail in the BYOD/C article, the emergence of low cost technological supplements and alternatives to institutional “instruction” is growing at an increasing pace. Yes, the state will always have a role in providing a “base level” of appropriate technologies for learners, but the reality is that students across the world are “doing it for themselves”, learning on their own devices using software and learning services of their own choice.

The biggest challenges in this area are to ensure equality of access to opportunties, and stopping the adoption of “lowest common denominator” technologies, learning applications, services and devices.

My pathway my way

Learning can be said to be ‘personalised’ when students have a unique set of pathways through their learning. Clearly, at early stages younger learners need a lot of adult support with learning decisions, but as learners progress through their schooling they need to become more independent – and that independence can be supported with technology. Personalised Learning is a characteristic of the Transformed Phase of schooling and discussed in the “Transformed Phase” of this blog.

For personal learning pathways to work well, three key problems need to be addressed:

Firstly, assessments – both high and low stake – need to be ported into the electronic domain. Increasingly we’re seeing this happen. In Norway, for example, national tests at level 5, 7 and 9 ++ and exams in upper secondary and now administrated electronically.

Secondly, data from assessment and ongoing learning tasks needs to be used to make effective decisions about what learning tasks need to be undertaken, and when. The resulting learning pathways need to be challenging but achievable and “in tune” with how individual students learn.

Thirdly, the difficult problem of Dynamic Timetabling needs to be solved. This is where the time students spend in formal schooling is determined not by a pre-determined matrix of subjects and timeslots allocated according to age and classes, but by a system that matches their precise learning requirments against the resources needed to meet these. The problem can, to a point, be addressed through CRM, but it will take an evolution in schooling management techniques as well as technology developments to solve this problem.

My content my way

The model of purchasing standard textbooks for all students must surely come under more intense questioning in 2012. Companies such as Triba Learning from Finland are offering fascinating glimpses of new models where data and algorithms are used to generate value. Triba uses data to segment students into increasingly granular groups that exhibit similar learning dispositions. Powerful algorithms are used to analyse how they best learn and select appropriate content. School districts save money through using this system to purchase only the content that best fits the learner’s requirements – as opposed to having to buy large sets of books which may only ever be partially used.

Content itself needs to change radically too. “Our high school kids are fantastic teachers,” said Professor Harry Kroto, talking at NEST 2011 about the GEOSET project, in which students record lectures that can be freely accessed online. Creating content leads to more learning than merely consuming content, so “atomising” content into building blocks that can be reassembled into customised materials by students and teachers is a clear way forward.

Whilst content and learning sofware has evolved to accommodate visual, auditory and kinesthetic learning styles, the next frontier is the use of neuroscience to make learning more engaging. We are learning more about the science of learning, and how to drive the motivation to learn. Emerging game-like learning software makes use of the individual’s natural reward system which helps them to learn which action has the most valuable outcome. Software can be designed to emulate a teacher who constantly adapts to current learner understanding. Thus software can enable far more effective learning than is often possible through one-to-one teaching.

My data my way

The standard way of looking at student related data is that it should be “owned” by the institution. But to get to truly personalised learning there needs to be a paradigm shift – one that is prepared to accept that the ownership of the data resides with the student, and their parent or gaurdians.

A similar idea sits behind Microsoft’s “Health Vault”. This CRM based solution enables individuals to store their own health records in the Cloud and then grant access to these records to trusted people – doctors/relatives etc. Health Vault has evolved into a platfrom with an online marketplace for applications and even USB devices that can be used to monitor and manage health issues. This idea isn’t new in education though – e-portfolios have long been based on similar principles.

For school students, it would be essential to integrate personally held data with the data held in formal schooling institutions. According to Stephen Coller from the Gates Foundation, its not possible to build large scale data driven solutions without going through formal schooling data systems and subsystems. For example, to integrate with class rosters, enrollment systems have to be accessed. According to Coller, there needs to be:

  • A unifying middle layer that eliminates the need for solution providers to integrate with each school’s systems

or

  • a trust framework and ‘digital locker’ that gives users control over their own data and records

and

  • A badging or certificate framework that spans formal and informal learning

When thinking about large scale data systems, the question is whether exisiting data is sufficiently rich or accessible enouhg to justify the huge efforts required to get more than a basic dataset shared between the stundent and the institution, or whether it would be easier to rearchitect the entire system from scratch based on the new paradigm.

Either way, a core problem which needs to be solved in this area is “Micro Federation” – ie the concept that a student with their own “digital locker” can grant and control access to that data to trusted 3rd parties. The benefit to the institution is access to data to help decision making at micro and macro levels. The benefit to the student is having their learning supported in ways that may have been difficult to achieve otherwise. To achieve Micro Federation, there are some key areas that need to be addressed including:

• Privacy

• Security

  • Authorization
  • IDs and authentication
  • Encryption

• Transaction models

• Interaction models

• Interconnection technology

• Interfaces

National Education Networks

Greater personalization requires improved interoperability between data, content, assessments and applications. But to scale personalised learning, we need to be able to solve big problems in the areas of data management; decision automation; individualised learning pathways; and content. To do all this requires National Education Networks (NEN). The purpose of an NEN is to:

  • Improve data flows for the benefit of students, within and between end-users and schooling institutions, regionally and nationally.
  • Provide a stable platform for learning and innovation based on interoperable systems
  • Reduce the technical burden on schools, allowing them to focus on the use of technology in teaching and learning rather than its management

Few countries have built NENs, but the UK is one country that has. In 2004, the BECTA – the British governments ICT agency – produced detailed plans for a national level network infrastructure for schools. This became the National Education Network – http://www.nen.gov.uk/

So what are the key problems that need to be solved in building a National Education Network? Firstly, a National Education Network should have three architectural layers:

  • Services
  • Interfaces
  • Infrastructure

Services

The services layer should define the outcomes required from the NEN. Key questions that need to be addressed are:

  • What services do we want the NEN to deliver?
  • To whom and when?
  • At what costs and return on investment?

This leads to functional decisions about three key elements – interfaces that expose the functions of one system to other systems; what operations are performed within a service function; what messages are inputted and outputted from service operations.

A well-designed NEN should provide a services platform on four levels:

  • Connectivity services linking all elements of the model together, safely and securely connecting end-user stakeholders to the internet and wider educational community
  • A marketplace for institutions and individual students to purchase and consume learning services including content; personalised learning management systems; and management information system
  • Data services including data warehousing, management information systems (MIS) and a range of data mining tools
  • An R&D “sandbox” using anonamised data about learning to enable software entrepreneurs to build ever more effective personalised learning solutions

Interfaces

An interface is a shared boundary across which information is passed. In an ideal NEN students own the data, and share selective parts of it with schooling systems, Local Education Authorities/Municipality/State, the Ministry of Education, parents/guardians and ultimately prospective Higher/Further Education institutions or even employers. Different stakeholders would need different information – the Ministry of Education, for example, would need much less information than the school.

For data to move effectively across the system, trust relationships need to exist between these boundaries. In a NEN, interfaces can be specified to manage the flow of data; monitor status; manage assets; and even control devices.

Defining interfaces trust relationships, and data exchange methods across a large population may be complex, but it offers huge potential in terms of increased effectiveness and cost savings.

Infrastructure

The Physical Network component of an NEN has multiple layers and requires at least the following to be designed:

  • Infrastructure
    • Access models – radio and television, digital devices, computing
    • Topology, IP addressing, naming
    • Plumbing, traffic routing
    • Storage
    • Network control
    • Security
  • Establishing Physical Security
    • Creating a secure physical boundary for critical communications equipment
    • Protecting the Network Elements
      • Securing routers, switches, appliances, VoIP gateways and network devices define network boundaries and act as interfaces to all networks
      • Designing the IP Network…
        • … based on sound IP network design principles
  • Directories and Control
    • User directories
    • Asset catalogues
    • Identity management
    • User management

A comprehensive design blueprint for a National Education Network is the BECTA specification for the UK’s NEN.

NENs for Personalised Learning

The ultimate goal for a NEN is to enable personalised learning at scale and cost-effectively. For that to happen several “moving parts” need to synchronise. At the start of the cycle, data about learning is used to present students with appropriate learning opportunities through tailored content. Students progress through these tasks through individual pathways. As they do, they generate data and different aspects of that data are used by different stakeholders for different reasons. The data is managed and communicated via the National Grid for Learning, and the marketplace platform within the NEN acquires appropriate content for the learner’s on-going learning process, starting the cycle over again.

Standards

Take a NEN with interfaces across the 5 boundaries described above. If each boundary handles 10 different types of data, then roughly speaking there are 105 (100,000) “sub-interfaces” that have to successfully connect to make the system function properly. The complexity increases dramatically when you add complexities such as data formats and exchange methods.

To reduce complexity in NENs, standards are a key consideration. I say a “consideration” rather than “the answer” because there are two different perspectives to take into account.

From a vendor point of view, standards can get in the way and increase costs. Typically, solution developers will build large scale Schooling Enterprise Architectures up to LEA or even state level, but rarely at national level. At these levels vendors generally find it easier to not have to conform to standards as this gives them freedom to design information systems to their own specifications and re-use IP and technologies from other similar projects.

From a NEN commissioning body (e.g. Ministry of Education) perspective, standards that are open and not driven by vendors are a key way to reduce their overall costs and complexity. For example, a NEN will require the integration of separate datacentres at municipality/LEA/State levels. Without standards, proprietary interfaces must be reworked for each new system added. It is simply easier if everyone does it the same way; so each datacentre should require just one standard interface which:

  • Standardizes the dialogs, messages, and data elements
  • Standardizes user interfaces to the system
  • Allows a single external interface with different agencies, enabling cooperation and coordination between them

Standards need to deliver value at both macro and micro levels. Standards that are developed at the national level may include information that local systems will not use. On the other hand, standards may need to be supplemented with additional information to meet local needs.

A noteworthy national level IT infrastructure for public services is the National Transportation Communications (NTCIP) system in the US and there is much that is transferable from NTCIP to the design of NENs. NTCIP is a set of standards for interoperability between computers and electronic traffic control equipment that covers the US and is now being adapted for implementation in other countries. A key to the success of this is system is how standards are integrated into the model. For example, for a system to be a part of the NTCIP “Management Information Base”, a set of mandatory objects are required, but to enable local adaptation, specified optional objects are permitted. To minimise cost, risk and complexity, the NTCIP Management Information Base is public, not proprietary.

Education has a long way to go to catch up with how NTCIP uses standards.

Key challenges in building NENs

There are many major challenges to building NENs including:

  • Selecting and building an appropriate framework of international standards and prescriptive methodologies, and ensuring public ownership of the overall model
  • Data aggregation and interoperability
  • Reconceptualising NENs to put the student at the centre

National Education Networks are certainly complex, but with the methods and standards now available, and the overall gains that they can bring there is every reason to expect to see an increasing number of national level education network projects in and beyond 2012.

Technology Trends in 2012

IT organizations must balance security against access, and meet the growing expectations of individuals who are more technology-savvy than ever before. As consumerisation grows and budgets get cut, IT leaders in education are becoming increasingly open to leveraging personally owned devices and external Web 2.0 services as well as to delivering information and services beyond their physical campuses.

This is shaping what IT and digital services will increase in significance in 2012, as summarised in the table below:

Enterprise computing Consumer computing
Wireless aaS Social-Learning Platform for Education
Federated Identity Management Windows-Based Tablet PCs
SIS International Data Interoperability Standards E-Textbook
Hosted Virtual Desktops Social Media in Education
Cloud Email for Staff and Faculty E-Portfolios
Unified Communications and Collaboration Mashups
CRM Lecture Capture and Retrieval Tools
BYOC strategies Media Tablets

At the NEST conference in Hong Kong, Facebook Co-founder Chris Hughes pronounced that “the textbook is dead”. “In the next five to seven years, the textbook is no longer going to be the basic building block of education.”

The challenge for education institutions in 2012 is to treat the pending changes as an opportunity and navigate into the future, making sound decisions that focus on learner achievement, and develop strategies and adapt organizational structures that embrace a world of choice.

The challenge to the education technology industry in 2012 is to ramp-up proofs of concepts that demonstrate how technology can viably personalise learning on a large scale.

A Chinese proverb says, “May you live in interesting times”. In the world of education technology, 2012 should prove to be a very interesting year indeed.

Happy New Year!

Taking the First Steps

Year-on-year $64bn is spent on ICT for schooling, but many schools around the world have yet to take their first steps to introducing ICT. Whilst the most advanced schools in the world can take full advantage of ICT, large tracts of the planet still don’t have grid electricity.

Figure 1. Huge areas of the world have no electricity, leave alone Internet and ICT

In 2007, the number of people with PCs passed the one billion mark – still a relatively small portion of the overall world population. The digital divide is still a defining characteristic of our age, and introducing ICT into schools is one way that governments are attempting to tackle this.

When technology is first introduced into schools, it tends to be used to supplement existing operations and processes. Schools begin to see the potential for ICT but operate in a typical “factory” approach with most learning, teaching and operational activities based on paper and students “receiving” their learning from their teachers. Typically it starts with teachers using a single computer with a projector, merely enhancing traditional teaching methods. The focus of computer use is to develop basic skills and students take turns to use the computers in computer labs.

Figure 2. Throughout the world, “computer labs” are considered an important first step

Challenges

Whilst OLPC was commendable for a number of reasons, the programme has proved that there is a lot more to introducing ICT into schools than simply “dumping” large numbers of laptops into the system. A recent study highlighted the kinds of challenges that need to be addressed in order to take full advantage of ICT in challenging areas.

“What happens when a school located 40km from the nearest town is suddenly burdened with the impossible task of providing power to 300 OLPC laptops?”. One school visited on the study, had only one low-voltage outlet located in the principal’s office… Many off-the-grid schools will not have Internet access either”.

A large scale ICT roll-out assumes high quality administrative processes, but this isn’t always available either – many countries still don’t keep central records of what schools are where, or how many students attended which schools. In some schools, teachers are even held personally responsible for any losses or damages, leading to lack of deployment. Finding trained technicians, familiar with local infrastructure and technology who can install and maintain ICT is often difficult too.

After a deployment of nearly half a million laptops to Peru’s poorest schoolchildren, most children didn’t even bring the devices home. In Peru’s roll-out, children were held responsible for reimbursing the school for any damages, many of which could easily occur during long treks or drives in mountainous terrain. Parents of these children soon asked their children to use the laptops as little as possible, rather than risking losing an entire year’s salary paying for broken devices. Another problem in Peru was lack of literacy. “A large majority of the kids have no idea where keys are located and sometimes don’t even know the letters.” For ICT to be useful, software and keyboards need to be in the local native language.

According to the same study, “the vast majority of teachers only care about one program: PowerPoint. Without training and incentives, the use laptops in the classroom just reinforce old techniques”.

Figure 3. Often ICT introduction will just enhance old techniques

Schools often deploy their first computing equipment for up to 10 years. This means that multiple generations of software need to run on single instances of hardware deployments. Computer technology must therefore be able to handle old content as well as new content – including curriculum materials, multimedia content, as well learning software titles.  Running all that content on a PC is a key challenge. Combine these issues with the various support challenges associated with ageing PC hardware and the result is an environment where the challenges seem to outweigh the benefits.

Schools taking the first steps towards ICT usgage tend to be price sensitive and because of this, cheap devices are widespread and common, e.g. refurbished computers >5 years old. In some cases low cost hardware designed specifically for schooling use processors and other key components that are roughly 5 years behind a new mid-range device.

Power, internet, and air quality are all factors in the deployment of technology solutions into schools. PCs and devices have to ‘just work’ in the face of highly variable power sources – often going down for hours and then spiking up to 10X the voltage levels upon resumption. In addition, internet connectivity to schools may be non-existent or at best highly variable – maybe Dial-up speeds, and only for certain hours a day, week, or month. In addition, internet connectivity could arrive in a non-uniform way such as over a satellite downlink, a DVD update, or an offline cache of static internet content. Air quality can be highly variable also, which in computing terms means there might be significant dust, sand, salt, and moisture build up which can affect a device’s longevity if not properly designed for.

Technical Requirements

Technology for schooling in challenging environments needs to have two key characteristics:

  • Resiliency. Uninterruptable power supply and surge protection are good places to start. At the beginning of a school day all the computers in the school need to start from a last known good state. When a problem arises, logical choices and low-risk options need to be presented to the user.
  • Adaptability. A key requirement is that when the school wants to connect a new client device it should easily detect it on the school network and provide the client with access to all appropriate network services (file storage, printer access, Internet access, etc.). When a school wants to connect an LCD projector, the appliance should recognize and pre-configure this device so that it is truly plug-and-play without the user having to know what resolution it should be set at or the make or model number.  If a school has a lab with ageing PC hardware and software the option to turn that PC into a thin client will help to extend the value of the school’s existing investment and limit exposure to future technical frustrations of dealing with older configurations. As new form factors emerge, it should be easy for them to be assimilated into the school network.

Students need straightforward user experiences such as easy storage and access of their files, and straightforward ways to log-in and store and retrieve their work. Even at the most basic levels, students like to personalise their PC experience to create a greater sense of ownership.

Teachers are focused on achieving a teaching objective and have little time for experiment and discovery. They need tools that require little training to understand and use, and resilient devices that when support is required it can be applied with “one-click” – e.g. easy restore, reset student PC, etc.

ICT decision makers at municipality, state or country level will want to be able to show an impact on learning outcomes – ideally during their term in office – from their investments in ICT. They will want to be able to increase economic opportunity by increasing academic achievement, building ICT skills and enabling access to online information to “bridge the digital divide”. Total cost of ownership will be a key factor in making these decisions.

Adoption of technology will not happen at scale anywhere without local suppliers, system builders, system integrators (SIs) and independent software vendors (ISVs). In rural towns and villages, these are likely to be “small shops” and may be responsible for a full 360 degree service – deploying, training and supporting the school. Suppliers need systems that don’t require extensive additional training to sell, customise and deploy. Flexibility for what devices can connect to network allows local system builders to offer “system + devices” packages.

Scenarios

Kiosk

In 1999, Sugata Mitra installed a computer connected to the Internet in a wall in a slum area in India and found that children below age 13 learned to use and surf the Internet without even knowing English. They taught themselves to use the mouse, learned many games and programs like Microsoft Paint, searched Hindi Web sites, and even removed viruses from files. Many were completely illiterate and could not understand word patterns or pronunciation; others had reading problems and low test scores in schools. Nevertheless, they could “read” the names of applications and explain their functions, even when their position on the screen was changed. They also learned many English words heard from the computer’s speakers. Children found solutions in groups and taught each other.

This kind of computer needs to be in a safe public place that the children associate with safety, free time, and play. Children in the “Hole in the Wall” project self-organise their learning. They develop computer literacy, Maths and English skills, improve their social values and get better at collaborating.

These results are replicable in many different parts of the world where “Hole in the Wall” experiments have been carried out, and “learning stations” can be provided in countries like India at an all-in cost of around $0.03 per child per day.

Another study conducted in low-income and rural areas of India found that students who had free computer access at public kiosks performed better on science and math tests than students without such access – Inamdar, P. and Kulkarni, A. (2007).

Mobile Classrooms

In rural areas from Cyprus to Tunisia to India and even in the United States, busses and vans are frequently used to provide mobile ICT classroom facilities. For example, The Commonwealth Youth Programme Technology Empowerment Centre on Wheels (CYPTEC) enables students in villages in India to acquire ICT skills and become more employable. CYTPEC uses a van fitted with several desktop computers, mobile internet, and sound systems – all powered by a generator.

A typical mobile classroom will be equipped with the around 10 workstations, appropriate furniture, a server, physical and virtual security, broadband satellite/Wi-Fi/3G, audio-visual, videoconference equipment and off-grid power generation – and ensure that people with disabilities can use the facilities.

In a particularly innovative solution, the time used to take children back-and-fore to school in busses is used for learning. In rural Arkansas school buses shuttle some students for over two hours a day, so Hector School District has teamed up with Vanderbilt University to make the buses into “mobile classrooms”. One school bus has received mounted television screens that show math and science programs to students. Seats are equipped with headphones for the children to use.

A few years ago, literacy rates in the Western Cape in South Africa needed boosting. The Western Cape has 2000 schools, almost all of which are difficult to get to and many have no electricity. There are few teachers so teaching children to read and write is extremely difficult. The solution here is a mobile unit, a 4 wheel drive and a teacher trained to take children/adults through an intensive reading programme using voice recognition and basic literacy software on the laptops.

First School PCs

 

A good starting point for permanent ICT facilities in schools is a single PC in a shared space with a projector, screen and printer. A first step towards teachers exploiting the power of technology includes activities such as using a PC and printer to produce worksheets, and using the PC and a data projector to present learning content. Having soft copies of documents means that teachers are easily able to save and reuse resources, thereby saving time. In this model teachers have educational tools with immediate value, and this provides a foundation to grow the value of ICT investments. This scenario enables teacher-led activities using multimedia and educational content via an LCD projector where students are recipients of content (simulations, video clips, ppts, DVDs, etc.). Content can be delivered with or without access to the Internet through media-stored and cached Web-content.

Sharing applications is a good way to get maximum value from PCs. Using Mouse Mischief, approximately 5-25 students, each with his or her own mouse, can answer multiple choice questions or draw on a shared screen. Sample lessons can be found here.

In the first stages of implementing computers in schools, it’s critical that at least one computer is put to administrative use. This should be used for student and teacher records, funding, staff pay, course records, equipment inventory and operational purposes. Teacher’s time can be better used when replacing paper-based methods with electronic communication. Tasks such as basic record keeping, issuing standard letters and communications, and timetabling all become a lot easier when using ICT.

Computer Lab

 

Typically, a first step to providing classes of students with access will start with a “lab”. Decisions need to be made about arranging worktables, for example, U or L shapes allow group interaction. An “island” arrangement with two PCs on each side of a table works well and encourages students to share information. Students will typically use computers primarily for research – web, cached content, DVD – and productivity (e.g. word processing and spreadsheets). Computer labs need a server to enable:

  • File/print/back-up/restore
  • Teacher-driven classroom management & orchestration of client PCs
  • Labs to easily grow/upgrade with a range of different kinds of clients
  • Access to learning content

Making the computers available to the wider community when not being used by students has many benefits. A local pool of skills, knowledge and interest in ICT can be developed, and small charges for training can be made, helping to meet costs. To deliver this service to the community, schools need to provide secure access. PCs have high value, so physical and software security is also usually required – for example “Kensington® Locks”, burglar bars on windows, padlocked doors, biometrics, access controlled areas, storage units for laptops and other mobile technologies. Disablement and recovery security tools, and hard-disk encryption such as bit locker should also be used.

Building blocks

Electricity

In many parts of the world, the electricity supply to schools is a major issue, but there are a range of technologies that can address this. The main options for off-grid power solutions are solar power, diesel/biofuel generators, wind power, hydrogen fuel cell, moped and stove.

Figure 4. Solar panels in a school in South Africa

Of these, solar is an increasingly popular option, especially as the price of diesel fuel continues to rise, with companies such as Inveneo delivering solar based solutions. In a UNHCR deployment in a refugee camp, for which Microsoft provided the computing solution, electricity is provided through NAPS Universal Power Packs. One NAPS Power Pack provides power for an infrastructure module with server, printer, wireless router, and projector or teacher work station. Other NAPS Power Packs power 4 workstations, and these can be added to the network in groups.

No schooling system wants to waste electricity so several considerations need to be made:

  • Form factors matter. Even without adding a monitor, a typical desktop computer can consume at a minimum more than 3x the power that a laptop consumes. The extra electricity used by desktops tends to dissipate as heat, which in turn requires more power in the form of air conditioning to remove.
  • The age and price of the computer matter too. Typically cheaper and older desktop computers will consume more electricity than newer, better quality laptops.
  • The operating system. For example, Windows 7 was designed to be the most energy efficient operating system available and used in conjunction with the right hardware can deliver considerable savings, even on older hardware.

Internet Access

Figure 6. Wi-Fi in a school in South Africa

Where providing electricity is a challenge, providing Internet access can be even more so. For areas not able to get broadband/wired access, there are many Internet access solutions available, the key ones being:

Dial-up

This is one of the simplest and oldest forms of Internet access and uses a normal phone line to connect a computer to an Internet Service Provider. Its relatively inexpensive, and widely availability where phone lines are present, but it’s also the slowest form of access with a maximum speed of 56Kbps. Another problem is that in schools which have only one phone line, others cannot use the phone while the computer is connected to the Internet.

Cellular

Cellular-based access requires a cell phone network that offers 3G or CDMA 2000 data and voice services. A cellular modem is required to connect a computer or computer network to the Internet via a cell phone provider. Data services charge according to the length of time you are connected to the network and the amount of data transmitted and/or received. Access speeds range from 56Kbps to over 500Kbps. This speed depends on the type of service available, the strength of the cell signal, the distance from the nearest cell transceiver, and local physical environment factors. The advantage of cellular networks are that they are widely available, but relative costs and fluctuating speeds mean that it’s not the best option for always-on, shared access, and high volumes of data.

Satellite

Satellite access enables Internet access in rural and remote areas where copper wire and fibre based options are not available. This option requires installation of a satellite dish and receiver which is then connected to the Internet router. Speeds range from 64Kbps to 5Mbps uploading and 128Kbps to 11Mbps downloading. Because upload times are faster than download times, ‘latency’ (i.e. the time that it takes from mouse click to seeing content in the browser) is long. Satellite connections can also be affected by rain and dust storms. Whilst its available almost everywhere, a satellite link must be within the “line of sight” of transmitting satellites.

Wi-Fi, WiMax

These two forms of wireless Internet access are usually available in larger towns and cities. These can be used for the delivery of a service to a specific customer or to provide access across an entire city. Wi-Fi can provide “point-to-point” access to locations up to 30 Km away, but this demands clear-line-of-sight between the transceiver and the location it is serving, a directional antenna and wireless receiver. WiMax, which is less commonly available, only requires a WiMax receiver.

Caching

Regardless of what internet access model is used, caching can allow users to experience less of a delay when their PC requests data from the network. For example, Windows 7 BranchCache caches data locally, enabling a better user experience.

Devices

There is a huge temptation to buy cheap and low-impact devices, but a golden rule is to understand that you generally get what you pay for. For example, colour inkjet printers are usually the least expensive to buy but often have the highest per page printing costs. Same applies to computers – cheap computers are cheap for a reason and will probably end up costing more in the longer run through having to maintain sub-standard components and higher electricity consumption. As discussed, the best approach is laptops for which a typical entry-level specification is 3GHz (clock) speed, 500GB Hard Drive (HDD) with 2GB RAM.

There’s also a temptation to buy devices other than PCs, including some ‘slate’ devices which have been designed primarily for content consumption. As discussed in detail in the “Learning Software 2.0” article, enabling children to create content is far more important than just enabling them to consume it, so laptops have a far higher potential return on investment.

Projectors and screens are also essential hardware, and one clever solution from South Africa – the compujector – combines a computer and a projector in one device – see http://www.astralab.co.za

Wireless routers should be purchased with built in security, Virtual Private Network (VPN), Firewall, and Ethernet capabilities.

It’s important to consider cabinets for securely storing and charging laptops too. Sometimes called “Classroom on Wheels”, these enable computers to be taken to different parts of the school. Lapsafe, is one leading manufacture worth checking out.

Network Management

With power, internet access, security and the right kind of facilities in place, the next challenge is to manage the devices so they are used effectively. This means controlling how the computers are used – creating and managing accounts; sharing files and learning materials; installing applications; monitoring and managing usage and hardware; protecting computers from viruses etc.

Figure 7. Windows Mulitpoint Server – controlling a mix of client computers

Windows Multipoint Server 2011 provides a solution which enables one computer to be used by up to 10 users, each with their own monitor, keyboard and mouse. This approach lowers the total cost of ownership by 66% compared to a traditional PC deployment, which typically uses a model that requires separate servers to enable file and hardware sharing, and computer management. WMS 2011 also enables teachers to easily control a classroom network, including networked client devices such as laptops. This was put to great effect in Haiti where, following the recent earthquake there, computer labs were hastily assembled with off-grid power solutions to deliver learning services.

Training

At this stage, training is about two key things – acquiring basic computing concepts and learning new pedagogic methods. Microsoft Digital Literacy helps students learn and assess their understanding of basic computing concepts and acquire 21st Century skills; and training for teachers in new pedagogic methods, which organisations such as Education Impact can provide .

Architectures

The main building blocks for introducing ICT into schools are as follows:

Figure 8. Key building blocks for taking the first steps

Who owns the computer makes a lot of difference. This decision narrows the access option to 1:1 – one device per student. If students get to take them home, the need for secure storage and charging diminishes – on the assumption that the computers can be used throughout the school. This in turn leads to decisions about pedagogy – will usage be restricted to a single room, or will students use the devices from lesson to lesson?

Figure 9. Different access options

Finally, decisions about lab layout are important too. Here the options range from “traditional” to “collaborative”.

Figure 10. Traditional classroom layout

Figure 11. Collaborative classroom layout

Is it worth the effort?

Introducing ICT into schools for the first time is costly and time-consuming. In Queensland Australia, 20 preparatory steps are taken before laptops are introduced into schools. First-time ICT introduction into any organisation is a non-trivial task.

According to the World Bank, much of the rationale for using ICT to benefit education has focused on its potential for bringing about changes in the teaching-learning paradigm. In practice, however, ICT is most often used to support existing teaching and learning practices with new and expensive tools.

But the World Bank goes on to say “consensus seems to argue that the introduction and use of ICT in education can be a useful tool to help promote and enable educational reform; ICT is both an important motivational tool for learning, and can promote greater efficiencies in education systems and practices”. With $2.4trn/year spent on schooling, with some systems just 7% effective – YES! it simply has to be worth taking these first steps.

Resources:

Thanks to Nasha Fitter and Rob Bayuk.

Spotlight on Jordan

According to Michael Trucano from the World Bank, Jordan is one of a handful of countries to watch. “Efforts have been made in numerous countries to replicate and adapt the model behind the innovative public-private partnership driving the forward-looking Jordan Education Initiative, perhaps the highest profile initiative of its kind among developing countries – and one of the better evaluated ones”.

Not surprising then to see the Jordan Education Initiative winning a UNSECO prize for excellence in the use of ICT in education in 2009.

But what exactly is the Jordan Education Initiative and what can we learn from it?

The Jordan Education Initiative (JEI) is one of several education initiatives run by the World Economic Forum, others being the Egyptian Palestinian and Rajasthan Education initiatives.

The Queen Rania Education Technology Centre from which the JEI is run

The JEI has the following objectives:

  • Improve the development and delivery of education to Jordan’s citizens through public-private partnerships
  • Help the government of Jordan achieve its vision for education as a catalyst for social and economic development
  • Accelerate of educational reforms in developing countries by unleashing the innovation of teachers and students through the effective use of ICT
  • Build the capacity of the local information technology industry in partnership with world class firms
  • Build a model of reform that can be exported to and replicated in other countries.

The JEI has 17 global corporations, 17 Jordanian entities, and 11 governmental and non-governmental organizations all working together to achieve these objectives, in partnership with the Government of Jordan. Commercial partners include Micrsoft, Intel, Cisco, HP, TribaliEARN and World Links.  

This PPP enabled JEI to improve learning for 80,000 students, via 3200 teachers in 100 “Discovery Schools”. Each Discovery School is fully networked; Internet connected and has access to computer labs and online content.

Jordan participated in PISA for the first time in 2006, and found that scores for Maths, Science and Reading were higher in the “Discovery Schools”.  Whilst these differences could potentially be caused by other factors, it’s reasonable to conclude that the initiative is having an overall positive effect.   

JEI Organisation chart

Key learning from the JEI includes:

  • Never lose focus on education
  • Ensure the technology is scalable
  • PPP is the backbone with clear roles and responsibilities for each partner
  • Strong governance and organizational structure
  • Correct scale of program
  • Monitoring and impact assessment is critical
  • Communication and PR plays a role
  • Change management vs. training
  • Continuity

(The World Economic Forum)

McKinsey and Company published an analysis of the JEI in 2005, and concluded that effective global-local, public-private partnerships should have the following key elements:

  • Clear vision and objectives, powerfully articulated in appropriate forums
  • Attractive governmental, social and geo-strategic conditions
  • Motivated partners, whose interests are aligned with initiative, providing sufficient inputs
  • Programme activities that leverage appropriate partner competences
  • Well-supported coordinating mechanisms
  • Consistent monitoring and evaluation
  • Effective governance to set strategic direction and align partners.

(McKinsey & Company, 2005)

Further information:

Jordan Education Initiative homepage

Discovery Schools Network using Point to Point Protocol over Ethernet

Microsoft support for ”New Schools Attitude”

Spotlight on Hungary

With a multiple award winning e-Learning platform and a strong, integrated set of ICT initiatives, Hungary is a country to watch and learn from.   

The Hungarian Government decided to invest in ICT after a disappointing PISA study showed that they were far behind international standards for providing work-place skills to students.  This lead to several initiatives, the most noteworthy of which is the SULINET Digital Knowledge base – an e-Learning platform which has achieved a wide range of accolades across Europe including:

The design goal was to make high quality learning content available that completely covered the curriculum at all stages of schooling across Hungary.

In 1996, Educatio – a ministry backed agency – developed SULINET with backing from Microsoft.  It now has over 1million learning objects in a wide variety of content types – classroom-ready handouts, diagrams, animations, lecture drafts, films and databases. Crucially, documents can also be edited by teachers to ensure that content remains up to date and relevant.

The user experience starts with a great interface:

From there, specific subject content can be easily located and used:

Collaboration on learning projects is made possible through “presence” and communication tools:

 

HOW DOES SULINET WORK?

Publishers or teachers create the content with a Windows based Learning Object (LO) creator tool, or via a browser, and load it into the National LO Content Management Server.

Whilst other e-Learning systems simply serve up learning objects for users to consume, SULINET enables users to blend learning assets to form sophisticated learning objects. This allows for a much more constructivist approach.

HOW WAS SULINET DEVELOPED?

For the content, there were three different calls:

  • A first call was for school book publishers to take the standard curriculum text books and turn them into interactive and multimedia learning tools.
  • A second call was for cross-curricular modules, newly introduced and any subjects that were not covered by the first call.
  • A third call was for additional teaching materials and media collections. Schools and institutions could contribute with self-made materials or they could open their existing digital content collections.

From September 2006 individual users could upload learning resources to their private users’ sites.

The content types available in the system are:

  • Reusable learning assets: the smallest, independently existing building blocks. These can be texts, pictures, sounds, animations, simulations, movie clips or tasks. They are reusable, because they can be combined with other assets to form unique combinations – learning objects.  
  • Learning objects: these are compiled from the learning asset building blocks, from the highest level subjects down to the lowest level learning units. These include experiments and tasks, for example.
  • Collections: sound, picture, video or test collections sourced from different national archives, such as the Hungarian News Agency (MTI) and the National Audiovisual Archive (NAVA).

The assets, objects and collections are stored in a central database, where they are classified and tagged. Underpinning this is the use of set of international standards – SCORM, IMS, LOM, and Dublin Core.

The system was developed in .NET and key technologies include: SQL (database); SharePoint; Visual Studio.NET

The knowledge base is available for everyone on the http://sdt.SULINET.hu site and its use for nonprofit public educational goals is free of charge.

The challenge now is for the Hungarian Ministry of Education to drive up usage amongst teachers, through teacher training campaigns, roadshows, and marketing activities.

BEYOND SULINET

SULINET is part of an integrated package of ICT initiatives that includes:

Whiteboards

35,000 out of the 62,000 classrooms in Hungary are equipped with interactive whiteboards, projectors and a set of 32 computers. These will come with classroom response systems and voting tools. The feedback of these IWBs showed that 70% of teachers found them very useful when teaching a class. To read more, click here.

Notebook computers

To add to the current stock levels, Intel have started to deploy their Classmate PCs into the market, starting with 3000. A further 2000 netbooks were also made available by the government through the Intelligent Schools Program.

 Teacher training

As part of the Microsoft Innovative Schools Program, 80,000 teachers were trained. The courses ensured that teachers were getting the most out of digital content, electronic administration and tutoring through IM.

Internet access

The quality of internet access in schools continues to improve, and broadband connections are now being pushed into primary schools.

KEY QUESTIONS

Thinking about implementing a SULINET type solution in your country? Here are some points to consider:

Who’s the principle audience – teachers, students, parents?

Who can publish – teachers, students, parents?

What incentives are there to encourage contributions?

How will Quality Assurance work?

What about peer review/rating systems?

Should all contributors be allowed to:

  • Create a SCO
  • Publish a SCO
  • Edit a SCO
  • Keep own created SCO’s by themselves without sharing?

How do you foresee the logical grouping working?

  • National level admin and users
  • District or conglomerate of schools admin and users
  • Individual School admin and users
  • Grade level admins and users (Eg Year 10)
  • Subject level admins and users (Eg Maths)

Who is the legal owner of a SCO – teacher, school, and district?

How do you manage digital rights?

FURTHER INFORMATOIN

  • To read a report about the original goals of SULINET, click here.
  • The next challenge for SULINET is to drive up usage of teachers and students by incorporating social networking into the portal. They have started to make use of forums for students and teachers to come together and discuss.
  • SULINET have also organized a variety of events since it’s conception in 1996, including:
  • SULINET Adventure Tour– competition amongst students involving theoretical and practical exercises.
    SULINETwork- A large conference held annually to update teachers on the latest functions on SDT 
  • To read more about SULINET, click here.
  • To read more on the current policies and programs in Hungarian public education, click here.
  • To review a full Insight report on Hungary click here

Spotlight on Russia

Russia has a long and proud tradition of World-class Maths, Science, Engineering and Computing education. So it’s not surprising that Russia was one of original innovators in implementing Computers and Computer Science into schools. “Computational Mathematics & Programming”, for example, was certified at national level as far back as 1961. For an interesting perspective on the development of the curriculum in a Russian school, click here.

Under the 1985 National Computer Literacy Program, Computer Science was included in the school curricula as a compulsory subject, alongside Mathematics, Physics and other Scientific disciplines. Schools were also supplied with computer facilities. The Computers for rural school initiative (2002-2003) ensured that each rural school in the country had a minimum of three computers in the building. Taking this to the next level, Intel partnered with Volnoe Delo to further provide access to technology across all regions in Russia.

The Internet for every school (2006-2008) program further improved access to Information Technology across all of Russia, and today every school in the country has access to ICT devices and the Internet. ICT literacy is also now compulsory in all teaching training courses. To support this the World Bank implemented their largest free-standing ICT/education project – the eLearning Support Project. This enabling 60,ooo teachers to be trained through 42 different training programs; 1100 distance learning courses; and digital learning resources made availalbe in 14 subjects.

Schools now make good use of a range of software including Microsoft, Adobe, and also “home grown” software from firms like ABBYY and 1C. As part of the Digital Education Resources Program (2008-2010), a number of free digital education resources are made available for students on a variety of school subjects.  

Leading the way in the use of ICT in Russia are a number of Innovative Schools. Given Russia’s track record in computer science, we can expect to see plenty of innovation coming out of the country in years to come.