2012 – The Year of Constructive Disruption?

This article is a personal perspective of the key Education Technology trends that we can expect to see in 2012. Whilst not expecting anything as apocalyptic as the Mesoamerican Long Count Calendar theory, my belief is that the world of education technology will see new and powerful disruptive forces in 2012. Whilst there are certainly very challenging times ahead for public sector institutions and the industry that serves them, innovation is accelerating too and new technologies and approaches will offer creative solutions for those who are prepared drive, or at least accept, change.

Mark Anderseen writing in the Wall Street Journal in August 2011 proposes that “Healthcare and education are next up for fundamental software-based transformation”. Education, Anderseen contends, has historically been highly resistant to entrepreneurial change, and is now primed for ‘tipping’ by new software-centric entrepreneurs”. This article explores the forces of technological change that are priming education for ‘tipping’, and what form that ‘tipping’ could take.

Forces of Disruption

As we start 2012 we enter uncharted economic, social and political territories. Frontier Strategy Group, a Washington based provider of market intelligence, predicts that advanced economies will “muddle through the next 18 months with low growth but avoid a major recession”. Gartner, on the other hand, predicts that by 2014, “major national defaults in Europe will lead to the collapse of more than a third of European banks” – which will have significant consequence worldwide.

Gartner also predict that the control of technology is “shifting out of the hands of IT organisations… Cloud, social, mobile and information management technologies are all evolving at a pace”.

Developing markets are exerting an increasingly powerful influence too. According to Frontier, in the next 4 years, Latin America will consume more PCs than in the previous 30 years combined (276 million units). So much for the so called “post PC era”. At the same time we’re seeing the Asia/Pacific region emerge as one of world’s largest markets for devices, with an expected total market sales of more than 6.3 million tablets in 2011.

End-user expectations are rapidly changing too – “end users expect to get access to personal, work, applications and data from any device, anytime and anywhere”. Users and institutions are also demanding ever better power conservation too. The concept of “Big Data” is starting to “alter the relationship of technology to information consumption, as data coming from multiple federated sources in structured and unstructured forms must now be analysed using new methodologies”.

So what does all this mean for education technology? The first thing to consider is the fact that ICT expenditure in education in 2012 is coming off a comparatively weak platform. For at least 20 years now, IT has systematically been introduced into schooling but whilst the value of IT in education is clear, what is also clear is that education has the lowest levels of IT spending amongst any type of major enterprise – IT Spending by Industry Vertical Market, Worldwide. So are we likely to see a boost in the purchase and adoption of IT in schooling worldwide in 2012? The answer to this will depend a lot on spending on education ICT by governments.

Government Spending

According to Gartner, the current decision-making environment is dominated by demands to cut costs while improving operational efficiency and effectiveness. “Government organizations will continue to adopt technology innovation, but mostly in areas where technology is inexpensive” or “support more radical approaches to cost containment”. “By 2013, government financial sustainability will join cost containment as the top driver and constraint for government IT spending”. This isn’t a short-term trend either – “the continuing pressure to cut government budgets is likely to influence spending priorities for the next decade or more”.

Those of us wishing for a tipping point where schooling gets transformed at scale may be in for a wait. For many governments in 2012, “the key challenge will no longer be to transform, but to fulfil their statutory obligations”.

IT investments that enable transformational change “will be limited, especially by the politics of establishing budget priorities and the difficulties of institutional change”. However, these challenges and opportunities won’t be evenly spread, so let’s now look at how these forces are playing out in different parts of the world.


Brazil – Microsoft’s Emilio Munaro says “there are more than 198,000 schools in Brazil and 98% of them now have computer labs”. “Tablet usage is growing fast, in many cases accelerated by popular touch enabled apps, but also long battery life which suits environments where electricity outlets are in short supply. However, broadband connection will remain as the challenge for Brazil in the next 3-4 years”.

Russia’s 2012-2014 budgets emphasise long-term development goals and the further introduction of ICT in schools. Expect to hear more about a significant new School of the Future project in the Moscow Region initiated by the Skolkovo Foundation.

The importance of using ICT for improving education in India has been emphasized in the policy framework for over a decade, and 2011 saw a number of large-scale device-lead initiatives. India is home to both one of the biggest IT workforces in the world, but also has incredible diversity in wealth and geography and this has lead to a wide range of solutions for both formal and informal learning. There’s every expectation that use of ICT in education will continue to grow and more innovations will emerge from India in 2012.

Meanwhile in China, mass school computerisation efforts are under way in rural Western China. “It is clear that Chinese support for the purchase of ICT infrastructure for schools will most likely increase greatly in the coming years” according to Michael Trucano from the World Bank.


The recent down-grading of credit ratings of some major European economies will mean that government borrowing in those countries will be more expensive, giving less room to manoeuvre on public spending. Whilst innovation and investment in ICT in schooling remains strong in many European countries, public sector austerity measures will inevitably cause disruption. However, one mitigating factor is that unemployment and the cost of school dropout is at the top of the agenda for many European countries, so investment in Education ICT may also be seen as a way to boost economic growth.

According to Mark East, General Manager for Microsoft’s Education Group “One thing is for sure; human capital is a nation’s greatest asset and Education will remain a priority investment area for most Governments”.


South Korea – already top of PISA and digital literacy skills tables – is surging ahead with a $2.4bn Education technology plan, now in its third phase of deployment. Many middle school and high school students now download and complete e-learning classes via their portable multimedia players as a matter of routine.

In Singapore, the government is driving technology lead innovation, and recently announced plans to digitise testing and examination systems.


There’s a sense of big appetite for change in the USA, driven by a collapse in adequate levels of funding for schooling and the rapid growth in virtual schooling and online learning resources. The Department of Education is executing against a strong National Education Technology Plan and the USA is a hotbed of innovation in the education consumer space.

Teacher Shortages

The world urgently needs to recruit more than 8 million extra teachers, according to UN estimates. A worldwide shortage of primary school teachers threatens to undermine global efforts to ensure universal access to primary education by 2015.

According to the Guardian newspaper, at least 2m new teaching positions will need to be created by 2015, and an additional 6.2 million teachers will need to be recruited to maintain the current workforce.

This means that the 55m practicing teachers worldwide have increasing demands on their time as countries compete to raise education standards and develop the skills required for economic growth, at a time when the profession is short of the optimal workforce by 15%. As pointed out by Professor Sugata Mitra recently, “quality teachers simply don’t exist where they’re needed most”. “Talented teachers tend to be drawn away from relatively poor areas due to offers of better jobs or higher incomes. For these reasons, “we need new methods of learning”.

Whilst it’s clear that ICT can help governments achieve their education aims, the increased demand for teachers with ICT skills is clearly outpacing supply.


Rapidly increasing availability of access to online learning sources, coupled with social networking is opening up a spectrum of low cost learning opportunities for students both inside and outside the classroom. MIT Open Courseware, Kahn Academy, University of the People, BBC Bitesize, Mymaths, Tutorhunt etc. all offer a supplement to teacher-lead “instruction”. Sugata Mitra’s “Hole in the Wall” project goes even further, offering learning where there simply are no teachers.

According to sources quoted by Larry Cuban of Stanford University, the worldwide market for self-paced eLearning products and services reached $32.1 billion in 2010 (about 50% of what formal education currently spends on ICT). The five-year compound annual growth rate (CAGR) is 9.2% and revenues will grow to $49.9 billion by 2015.

Clayton Christiansen, in his book “Disrupting Class” predicted that virtual schooling will force massive changes to formal schooling systems. By 2008, online enrolments for virtual schooling in the US had risen from 45,000 in 2000 to over 1 million, and there are no signs that this is slowing down.

A key component in consumerisation is social networking, and we’re seeing a lot of innovation in this space. For example, Microsoft’ recently announced So.cl which integrates search into the social learning experience.

Shifting Power

More Learning Please

Rising youth unemployment in Europe and the Middle East, globalisation and growth in developing countries are all fuelling the need for more knowledge, skills and competencies.

“People leaving our schooling systems, more now than ever, will need to be able to respond positively to the opportunities and challenges of the rapidly changing world in which we live and work. In particular, they need to be prepared to engage with environmental, economic, social and cultural change, including dealing with the effects of global warming and the continued globalisation of the economy and society, with new work and leisure patterns and with the rapid expansion of communication technologies.” (UK Qualifications and Curriculum Authority).

In the same way that there is limited funding available from the public purse, there is also limited time in the school day into which to squeeze the curriculum. Again, the implications are clear – more effective learning has to be implemented.

Mind the Engagement Gap

Commercial websites are increasingly become social sites, leaving a shortage of people to deal with social engagement on the scale required. The same pattern is happening in schooling where the teaching workforce does not have the capacity to deal with the explosion in the demands for skills and competencies, and the increasingly availability of online learning. As students’ technology capacity grows relative to that of teachers, an engagement gap between students and teacher is set to widen.

The answer to the engagement gap in commerce is the increasing use of “bots” and many sites now have fully or semi-automated live chat. In 2010, the average user of Facebook has 120 to 150 friends. Some of these “friends” are not real people, and many users find this to be quite natural. Gartner predicts that by 2015, 10% of your online “friends” will be nonhuman. It’s a reasonable bet that some of these online friends will be virtual tutors.

What will the answer to the engagement gap in schooling look like? Professor Sugata Mitra explores the theory that, given unrestricted and unsupervised access to the Internet, groups of children can learn almost anything on their own. Few – myself included – would advocate this as a universal approach to schooling, but it’s clear that technology enhanced independent and social learning offers answers to both the lack of teachers and the need for more effective learning.

Irresistible Forces Meet the Immovable Object

So the forces of consumerisation, increased learning requirements, and the demand for relevant ways to engage are beginning to weigh heavily on institutionalized learning.

According to Gartner, “the homogeneous learning and technology environment of the last century is fading fast. Moreover, the ivory tower mentality of education agencies is disappearing to reflect changing needs and values”.

These irresistible forces, however, will continue to meet an immovable object – schools. Whilst the nature of schooling will surely change, children will still be going to places called schools run by teachers well into the foreseeable future. Schools have responsibilities beyond academic learning. Parents and voters want schools to socialize students into community values, prepare them for civic responsibilities, and get them ready for college and career. Technology enhanced independent learning alone cannot meet those demands.

Big challenges for 2012

So the 2012 landscape will be dominated the necessity to provide more learning at less cost, against a backdrop of human capacity shortages and students faced with greater consumer choices.

Schooling IT leaders must balance the demands of supporting today’s environment, addressing the demands of the education stakeholder community, and preparing for a technology-driven transformation of the education ecosystem.

So what, then, are the big education technology challenges for 2012?  Its my belief that there are three big problems to crack, and that in 2012 market forces will drive progress in each of these areas.

1. ROI

2. Personalising Learning

3. National Education Networks


I start with ROI because in times of squeezed budgets it’s essential that both institutions and suppliers are able to identify which budget lines have the greatest and least impact on the learning “bottom line”, and identify where investments will have the most positive effect. At the very least, I’d expect it to at least become more acceptable to talk about ROI for investments in education technology. As discussed in detail in this blog – Lets Talk About Money – the idea of at least attributing “cost per unit learned” to investments should have become standard practice by now.

Personalised learning

For at least 10 years, the goal of personalized learning has been talked about, pursued as a strategy, dropped when found too hard to execute, and then talked about again. So, could 2012 be the year when personalizing learning at scale begins to take off?

I’m optimistic that we’ll see some progress in this space this year, because Personalising Learning can address so many of the problems that schooling currently faces. When we also add the learnings that we now have from games-based-learning, neuroscience and Artificial Intelligence (see Artificial Intelligence in Schooling Sytems) we seem to have all the technical building blocks in place. Personalised Learning also fits the trend towards consumerisation really well.

Think of Personalised Learning from a student’s perspective as “My Learning My Way”. To get to My Learning My Way, there are several key elements:

My technology my way

As discussed in detail in the BYOD/C article, the emergence of low cost technological supplements and alternatives to institutional “instruction” is growing at an increasing pace. Yes, the state will always have a role in providing a “base level” of appropriate technologies for learners, but the reality is that students across the world are “doing it for themselves”, learning on their own devices using software and learning services of their own choice.

The biggest challenges in this area are to ensure equality of access to opportunties, and stopping the adoption of “lowest common denominator” technologies, learning applications, services and devices.

My pathway my way

Learning can be said to be ‘personalised’ when students have a unique set of pathways through their learning. Clearly, at early stages younger learners need a lot of adult support with learning decisions, but as learners progress through their schooling they need to become more independent – and that independence can be supported with technology. Personalised Learning is a characteristic of the Transformed Phase of schooling and discussed in the “Transformed Phase” of this blog.

For personal learning pathways to work well, three key problems need to be addressed:

Firstly, assessments – both high and low stake – need to be ported into the electronic domain. Increasingly we’re seeing this happen. In Norway, for example, national tests at level 5, 7 and 9 ++ and exams in upper secondary and now administrated electronically.

Secondly, data from assessment and ongoing learning tasks needs to be used to make effective decisions about what learning tasks need to be undertaken, and when. The resulting learning pathways need to be challenging but achievable and “in tune” with how individual students learn.

Thirdly, the difficult problem of Dynamic Timetabling needs to be solved. This is where the time students spend in formal schooling is determined not by a pre-determined matrix of subjects and timeslots allocated according to age and classes, but by a system that matches their precise learning requirments against the resources needed to meet these. The problem can, to a point, be addressed through CRM, but it will take an evolution in schooling management techniques as well as technology developments to solve this problem.

My content my way

The model of purchasing standard textbooks for all students must surely come under more intense questioning in 2012. Companies such as Triba Learning from Finland are offering fascinating glimpses of new models where data and algorithms are used to generate value. Triba uses data to segment students into increasingly granular groups that exhibit similar learning dispositions. Powerful algorithms are used to analyse how they best learn and select appropriate content. School districts save money through using this system to purchase only the content that best fits the learner’s requirements – as opposed to having to buy large sets of books which may only ever be partially used.

Content itself needs to change radically too. “Our high school kids are fantastic teachers,” said Professor Harry Kroto, talking at NEST 2011 about the GEOSET project, in which students record lectures that can be freely accessed online. Creating content leads to more learning than merely consuming content, so “atomising” content into building blocks that can be reassembled into customised materials by students and teachers is a clear way forward.

Whilst content and learning sofware has evolved to accommodate visual, auditory and kinesthetic learning styles, the next frontier is the use of neuroscience to make learning more engaging. We are learning more about the science of learning, and how to drive the motivation to learn. Emerging game-like learning software makes use of the individual’s natural reward system which helps them to learn which action has the most valuable outcome. Software can be designed to emulate a teacher who constantly adapts to current learner understanding. Thus software can enable far more effective learning than is often possible through one-to-one teaching.

My data my way

The standard way of looking at student related data is that it should be “owned” by the institution. But to get to truly personalised learning there needs to be a paradigm shift – one that is prepared to accept that the ownership of the data resides with the student, and their parent or gaurdians.

A similar idea sits behind Microsoft’s “Health Vault”. This CRM based solution enables individuals to store their own health records in the Cloud and then grant access to these records to trusted people – doctors/relatives etc. Health Vault has evolved into a platfrom with an online marketplace for applications and even USB devices that can be used to monitor and manage health issues. This idea isn’t new in education though – e-portfolios have long been based on similar principles.

For school students, it would be essential to integrate personally held data with the data held in formal schooling institutions. According to Stephen Coller from the Gates Foundation, its not possible to build large scale data driven solutions without going through formal schooling data systems and subsystems. For example, to integrate with class rosters, enrollment systems have to be accessed. According to Coller, there needs to be:

  • A unifying middle layer that eliminates the need for solution providers to integrate with each school’s systems


  • a trust framework and ‘digital locker’ that gives users control over their own data and records


  • A badging or certificate framework that spans formal and informal learning

When thinking about large scale data systems, the question is whether exisiting data is sufficiently rich or accessible enouhg to justify the huge efforts required to get more than a basic dataset shared between the stundent and the institution, or whether it would be easier to rearchitect the entire system from scratch based on the new paradigm.

Either way, a core problem which needs to be solved in this area is “Micro Federation” – ie the concept that a student with their own “digital locker” can grant and control access to that data to trusted 3rd parties. The benefit to the institution is access to data to help decision making at micro and macro levels. The benefit to the student is having their learning supported in ways that may have been difficult to achieve otherwise. To achieve Micro Federation, there are some key areas that need to be addressed including:

• Privacy

• Security

  • Authorization
  • IDs and authentication
  • Encryption

• Transaction models

• Interaction models

• Interconnection technology

• Interfaces

National Education Networks

Greater personalization requires improved interoperability between data, content, assessments and applications. But to scale personalised learning, we need to be able to solve big problems in the areas of data management; decision automation; individualised learning pathways; and content. To do all this requires National Education Networks (NEN). The purpose of an NEN is to:

  • Improve data flows for the benefit of students, within and between end-users and schooling institutions, regionally and nationally.
  • Provide a stable platform for learning and innovation based on interoperable systems
  • Reduce the technical burden on schools, allowing them to focus on the use of technology in teaching and learning rather than its management

Few countries have built NENs, but the UK is one country that has. In 2004, the BECTA – the British governments ICT agency – produced detailed plans for a national level network infrastructure for schools. This became the National Education Network – http://www.nen.gov.uk/

So what are the key problems that need to be solved in building a National Education Network? Firstly, a National Education Network should have three architectural layers:

  • Services
  • Interfaces
  • Infrastructure


The services layer should define the outcomes required from the NEN. Key questions that need to be addressed are:

  • What services do we want the NEN to deliver?
  • To whom and when?
  • At what costs and return on investment?

This leads to functional decisions about three key elements – interfaces that expose the functions of one system to other systems; what operations are performed within a service function; what messages are inputted and outputted from service operations.

A well-designed NEN should provide a services platform on four levels:

  • Connectivity services linking all elements of the model together, safely and securely connecting end-user stakeholders to the internet and wider educational community
  • A marketplace for institutions and individual students to purchase and consume learning services including content; personalised learning management systems; and management information system
  • Data services including data warehousing, management information systems (MIS) and a range of data mining tools
  • An R&D “sandbox” using anonamised data about learning to enable software entrepreneurs to build ever more effective personalised learning solutions


An interface is a shared boundary across which information is passed. In an ideal NEN students own the data, and share selective parts of it with schooling systems, Local Education Authorities/Municipality/State, the Ministry of Education, parents/guardians and ultimately prospective Higher/Further Education institutions or even employers. Different stakeholders would need different information – the Ministry of Education, for example, would need much less information than the school.

For data to move effectively across the system, trust relationships need to exist between these boundaries. In a NEN, interfaces can be specified to manage the flow of data; monitor status; manage assets; and even control devices.

Defining interfaces trust relationships, and data exchange methods across a large population may be complex, but it offers huge potential in terms of increased effectiveness and cost savings.


The Physical Network component of an NEN has multiple layers and requires at least the following to be designed:

  • Infrastructure
    • Access models – radio and television, digital devices, computing
    • Topology, IP addressing, naming
    • Plumbing, traffic routing
    • Storage
    • Network control
    • Security
  • Establishing Physical Security
    • Creating a secure physical boundary for critical communications equipment
    • Protecting the Network Elements
      • Securing routers, switches, appliances, VoIP gateways and network devices define network boundaries and act as interfaces to all networks
      • Designing the IP Network…
        • … based on sound IP network design principles
  • Directories and Control
    • User directories
    • Asset catalogues
    • Identity management
    • User management

A comprehensive design blueprint for a National Education Network is the BECTA specification for the UK’s NEN.

NENs for Personalised Learning

The ultimate goal for a NEN is to enable personalised learning at scale and cost-effectively. For that to happen several “moving parts” need to synchronise. At the start of the cycle, data about learning is used to present students with appropriate learning opportunities through tailored content. Students progress through these tasks through individual pathways. As they do, they generate data and different aspects of that data are used by different stakeholders for different reasons. The data is managed and communicated via the National Grid for Learning, and the marketplace platform within the NEN acquires appropriate content for the learner’s on-going learning process, starting the cycle over again.


Take a NEN with interfaces across the 5 boundaries described above. If each boundary handles 10 different types of data, then roughly speaking there are 105 (100,000) “sub-interfaces” that have to successfully connect to make the system function properly. The complexity increases dramatically when you add complexities such as data formats and exchange methods.

To reduce complexity in NENs, standards are a key consideration. I say a “consideration” rather than “the answer” because there are two different perspectives to take into account.

From a vendor point of view, standards can get in the way and increase costs. Typically, solution developers will build large scale Schooling Enterprise Architectures up to LEA or even state level, but rarely at national level. At these levels vendors generally find it easier to not have to conform to standards as this gives them freedom to design information systems to their own specifications and re-use IP and technologies from other similar projects.

From a NEN commissioning body (e.g. Ministry of Education) perspective, standards that are open and not driven by vendors are a key way to reduce their overall costs and complexity. For example, a NEN will require the integration of separate datacentres at municipality/LEA/State levels. Without standards, proprietary interfaces must be reworked for each new system added. It is simply easier if everyone does it the same way; so each datacentre should require just one standard interface which:

  • Standardizes the dialogs, messages, and data elements
  • Standardizes user interfaces to the system
  • Allows a single external interface with different agencies, enabling cooperation and coordination between them

Standards need to deliver value at both macro and micro levels. Standards that are developed at the national level may include information that local systems will not use. On the other hand, standards may need to be supplemented with additional information to meet local needs.

A noteworthy national level IT infrastructure for public services is the National Transportation Communications (NTCIP) system in the US and there is much that is transferable from NTCIP to the design of NENs. NTCIP is a set of standards for interoperability between computers and electronic traffic control equipment that covers the US and is now being adapted for implementation in other countries. A key to the success of this is system is how standards are integrated into the model. For example, for a system to be a part of the NTCIP “Management Information Base”, a set of mandatory objects are required, but to enable local adaptation, specified optional objects are permitted. To minimise cost, risk and complexity, the NTCIP Management Information Base is public, not proprietary.

Education has a long way to go to catch up with how NTCIP uses standards.

Key challenges in building NENs

There are many major challenges to building NENs including:

  • Selecting and building an appropriate framework of international standards and prescriptive methodologies, and ensuring public ownership of the overall model
  • Data aggregation and interoperability
  • Reconceptualising NENs to put the student at the centre

National Education Networks are certainly complex, but with the methods and standards now available, and the overall gains that they can bring there is every reason to expect to see an increasing number of national level education network projects in and beyond 2012.

Technology Trends in 2012

IT organizations must balance security against access, and meet the growing expectations of individuals who are more technology-savvy than ever before. As consumerisation grows and budgets get cut, IT leaders in education are becoming increasingly open to leveraging personally owned devices and external Web 2.0 services as well as to delivering information and services beyond their physical campuses.

This is shaping what IT and digital services will increase in significance in 2012, as summarised in the table below:

Enterprise computing Consumer computing
Wireless aaS Social-Learning Platform for Education
Federated Identity Management Windows-Based Tablet PCs
SIS International Data Interoperability Standards E-Textbook
Hosted Virtual Desktops Social Media in Education
Cloud Email for Staff and Faculty E-Portfolios
Unified Communications and Collaboration Mashups
CRM Lecture Capture and Retrieval Tools
BYOC strategies Media Tablets

At the NEST conference in Hong Kong, Facebook Co-founder Chris Hughes pronounced that “the textbook is dead”. “In the next five to seven years, the textbook is no longer going to be the basic building block of education.”

The challenge for education institutions in 2012 is to treat the pending changes as an opportunity and navigate into the future, making sound decisions that focus on learner achievement, and develop strategies and adapt organizational structures that embrace a world of choice.

The challenge to the education technology industry in 2012 is to ramp-up proofs of concepts that demonstrate how technology can viably personalise learning on a large scale.

A Chinese proverb says, “May you live in interesting times”. In the world of education technology, 2012 should prove to be a very interesting year indeed.

Happy New Year!

Driving Complexity Out Of Schooling ICT

This article is a first draft on what I think will become an increasingly important thread. Complexity has caused some serious and extreme failures in other areas of the Public Sector. The UK National Health Service “National Programme for Information Technology” project is just one of many high-profile, massive Public Sector ICT projects around the world that have buckled under the weight of their own complexity. As schooling ICT systems develop in sophistication and scale, it’s a reasonable assumption that the struggle against complexity in this area will increase significantly.

A Simple Model Of Complexity

Take 12 dice, put them in a bucket and give the bucket a shake. Pour the dice on the table.  How many possible combinations (states) could you have? The answer – 2 bn. To be precise, where you have 12 components each with 6 possible states, the possible number of states is 612 = 2,176,782,336. So what has this got to do with schooling ICT?

The dice example is a metaphor for how complex any ICT system can be. Each component in an ICT system – software, hardware, process, workflow etc – can all exist in many different states. A single piece of software, with 12 variables each with 6 possible states would have in excess of 2bn possible states. Likewise, a process with 12 decision points, each with six possible paths would also have over 2bn possible states. Combined, these systems have trillions of possible states.

So what does this mean to you? If your role involves responsibility for complex systems – either in a management or technical capacity – having a method for dealing with complexity will likely be very useful indeed.

Let’s begin by acknowledging that complexity is the enemy of effectiveness and efficiency. Complexity costs money and can cause systems fail to get off the ground, or collapse when they are running. Removing complexity removes costs – and lowers risk too – so it’s well worth thinking about. This article sets out a V1.0 five step processes for driving out complexity from your systems. Parts of this are based on a wonderful piece of work on this area by Roger Sessions called “Simple Architectures for Complex Enterprises”, which I strongly recommend. The method has 3 elements:

  • A container
  • 5 steps
  • A maturity model pathway
Schooling ICT Simplification System

Container – Enterprise Architecture

The 5 step process – which we’ll call “Schooling ICT System Simplification” – sits within the context of Enterprise Architecture. This is the container for all the components and relationships within large, complex systems. Three definitions are important here:

  • Enterprise: a collection of organisations that share a common set of goals. Enterprise in this sense does not mean “business”, though businesses can be enterprises.
  • Architecture: a system’s components and the organisation of how they relate to one another.
  • Enterprise Architecture: a description of the goals of an enterprise, how these goals are realised by processes, and how these processes can be better served by technology.

Enterprise Architecture (EA) is a 20 year old discipline, and is used to organise technology to add value in complex organisations.

There are several “off-the-shelf” Enterprise Architecture methodologies that one could use, eg:

The Queensland Government in Australia also has some potentially useful thinking in this area with their “Queensland Government Enterprise Architecture 2.0

These can all play a role in schooling systems, but schooling has some very specific structures and requirements that would require a ‘standard’ EA to be adapted considerably. This is why I wrote Schooling at the Speed of Thought – the goal of which was to help schooling systems develop a domain specific version of Enterprise Architecture called “Schooling Enterprise Architecture” (SEA). Since writing Schooling at the Speed of Thought I’ve updated SEA to Version 2.0 below.

“Schooling at the Speed of Thought” was designed to take organisations a long way towards defining their goals, how these goals are realised by processes, and how these processes can be better served by technology.

Schooling Enterprise Architecture V2.0 (SEA)

With Enterprise Architecture established as the container for all activities relating to developing ICT systems, the next step is to embark on the simplification process itself.

1. Govern

High quality decision making is the bedrock on which reducing complexity rests. You will need an organisational model for how decisions will be made, how responsibilities will be delegated and performance managed. At the SEA level, we are not concerned with the “how” (the ‘nuts and bolts’ of developing solutions) but the “what” – ie what does and what will our organisation do. However, the SEA team needs to be responsible for directing the policies that shape how solutions projects are executed and the higher level architectures and standards that they should work within.

Key SEA governance issues include:

  • Composition of the SEA team
  • Reporting structures for the SEA team
  • Processes for introducing functional components into the SEA
  • Ownership and management of the SEA development process
  • Ownership and management of the component inventories, taxonomies, standards, and technical infrastructure
  • Management of the technical infrastructure
  • Ownership of knowledgebase – i.e. SEA documentation and architectural designs

Governance should ensure that there are processes for:

  • Documenting organisational requirements
  • Managing artefacts
  • Establishing solution project requirements
  • Measuring milestones
  • Showing delivered value and ROI

2. Map

A Schooling Enterprise Architecture can be reduced down to functional components and the relationships between them. Key questions at this stage are:

  • What are the goals of the organisation?
  • How is the organisation structured into processes?
  • How do those processes relate to one another?
  • Which processes can be best improved through technology?
  • What is the plan for making those improvements?

Before we look at this further, let’s return to our dice analogy – starting with two dice in one bucket. On average, it would take 36 throws to get the same outcome (e.g. 2 sixes). Separating the dice into two buckets, we have to throw the dice six times in one bucket then six times in the second bucket to get the same outcome – a total of 12 throws. Applying the same maths, splitting up 12 dice in one bucket into 12 buckets each with one dice reduces the number of throws to get the same system state (say 12 sixes) from 2.2bn to 72. This is because we split the process of getting 12 sixes into 12 consecutive events, rather than waiting for the combination to occur simultaneously. In other words breaking up a tightly coupled chain of components into independent (autonomous) components radically reduces complexity. Mathematically, this is known as partitioning, and it can be applied directly to complex organisations.

For the sake of clarity and consistency we’ll call the functional components in a SEA “Autonomous Functional Capabilities” (AFCs). AFCs are the fundamental building blocks from which an SEA is built. They contain two components – “Process” and “Technology”.

‘Autonomous’ means that they can function independently of other AFCs; ‘Capability’ means that they can produce something tangible. We are only concerned with what AFCs do and how they relate to one another.

We use partitioning to make sure that every function of the schooling system lives in one – and only one – AFC. This means ensuring that they are made up of unique components, and their functions don’t overlap with other AFCs. Importantly, AFCs can be composed of other AFCs.

AFCs are not completely random with respect to one another as are dice. Typically, there will be interactions between AFCs – eg messages or database sharing. A design goal then is to minimise the number and complexity of interactions, balancing needs for interoperability between AFCs whilst controlling complexity inside AFCs. This means carefully defining relationships and using as few relationship categories as possible – these are typically:

  • Information Request
  • Information Broadcast
  • Work Request
Autonomous Functional Capabilities (AFCs)

AFCs can further be categorised as follows:

AFC Categories

Mapping the entire organisation, using partitioning to “decompose” functions into AFCs, and defining their relationships can reveal the full extent of organisational complexity, and pave the way for further simplification.

3. Rationalise

The next step in reducing complexity is to rationalise the map that we have created in step 2.

Returning to the dice analogy, another way to reduce complexity would be to reduce the number of dice in the system. In ICT terms, this means removing functions that are not absolutely necessary. It’s about ensuring that every function is linked to an explicit, concrete, and quantifiable requirement. It is also about looking for consolidation opportunities, and asking if there is already an implementation of a given AFC type that can be tweaked. Functions can also be removed by outsourcing them, and Cloud computing is opening opportunities for doing this.

With the SEA now analysed, mapped, partitioned and non-core functions removed or outsourced, the next step is to prioritise which new AFCs to implement or develop. The following factors should drive the prioritisation of which AFCs to fund:

  • Value drivers – e.g. cost savings, increasing learning, providing access to opportunities
  • Cost
  • Risk – organisational and technical
  • Organisational readiness
  • Team readiness
  • The cost of not deploying an AFC

Above all else, these factors should be quantifiable and easy to display together visually in a Radar Graph. Politics also plays a part in prioritisation, and often it makes sense to prioritise AFC deployments towards high impact, low risk and low cost. Creating short term, high visibility wins helps attract support for broader initiatives.

4. Solve

We can define the term Solutions as “a managed package of technologies, services and programmes that together solve an organisation’s problems or address new opportunities”. Solutions sit inside Enterprise Architectures and are the projects by which an organisation can achieve new levels of maturity. A solution project can address low level point problems, such as printing, or high level opportunities such as complete organisational transformation. Enterprise Architecture is the “what”. Solution projects are the “how”.

There are several layers of prescriptive guidance to consider when building solutions:

Solution Methodologies

There are several solution methodologies to choose from. TOGAF and the Zachman Framework are both Enterprise Architecture approaches and solution methodologies. However it’s the Microsoft Solutions Framework that seems to work best on complex schooling solutions projects. Whilst devised by Microsoft, this methodology is completely technology agnostic.


MSF is made up of prescriptive models and disciplines that guide solution projects through from inception to delivery.


The MSF Process Model consists of five phases:

MSF Phases

Envisioning Phase

This is about creating a broad description of the goals and constraints of the project.  In this phase, you identify the solution team and what the team must accomplish for the customer.  The purpose of the envisioning phase is to build a shared vision of the project among all the key stakeholders of the project.

This phase culminates in a Vision/Scope document, agreed and approved by all key stakeholders.  The document sets out what the project aims to achieve, what is in and out of scope, the project structure and a risk assessment. The document is built during an envisioning process that includes the following steps:

  • Defining the goals
  • Defining the project structure
  • Setting up the team
  • Assessing the current situation
  • Creating a vision statement
  • Identification of the scope of the project
  • Defining requirements and user profiles
  • Developing a solution concept
  • Assessing risk

The Planning Phase

Deliverables of the planning phase are:

  • Requirements: Organisation; User; Operations; System  
  • Use scenarios and use cases
  • Functional Specification—including design and architecture
  • Master Project Plan and Master Project Schedule
  • Development, testing, and staging environments

The main outcome of the planning phase is an approved project plan — due dates that are realistic, project roles and responsibilities that are well defined, and everyone agrees to the deliverables for the project.

The Developing Phase

In this phase, the team develops the infrastructure for the solution. This involves the source code and executable files, installation scripts and settings, and support elements.

The development process includes creating a prototype application; developing the solution components; completion of all features; and delivery of code and documentation.

Stages of the developing phase are:

  • Proof-of-concept application
  • All features complete and have gone through unit testing
  • The product is ready for external testing and stabilisation
  • Customers, users, operations and support personnel, and key project stakeholders can evaluate the product and identify any issues that must be addressed before the solution is shipped

The Stabilizing Phase

At the end of this phase the solution will meet the defined quality levels.  The stabilisation process involves running the solution in a staging area with actual users and real usage scenarios, including an extensive and comprehensive range of tests.

The stabilizing phase goes through the following stages:

  • Zero-bug release
  • Release candidates
  • Golden release — zero-defect and meeting success criteria metrics

At the final release, the responsibility for managing and supporting the solution is officially transferred from the project team to the operations and support teams.

The Deploying Phase

During this phase, the team deploys the solution technology and site components, stabilizes the deployment, transfers the project to operations and support, and obtains final customer approval of the project.

Deliverables of the deploying phase

  • Operation and support information systems
  • Documentation repository for all versions of documents and code developed during the project
  • A training plan
  • Project completion report

Deploying new solutions can be a source of complexity if large numbers of AFCs are rolled-out simultaneously. It’s better to roll-out a single AFC on a small scale, and quickly, and then add other sites and related AFCs over time, rather than attempt “Big Bang” deployments. 

Solution Architectures

Solution Architectures differ from Enterprise Architectures in as much as they describe the “how” in full technical detail. 

Any architecture should enable its users to:

  • Plan infrastructure, hardware, software and services procurement
  • Organise how information and services are used
  • Arrange the system components to function as an integrated whole

It’s important to develop Solution Architectures to a common set of design principles. Services Orientated Architecture Service (SOA) should be considered a strong candidate for this. A system based on a SOA will package functionality as a suite of interoperable services that can be used across the entire enterprise. Sub systems within an SOA interoperate through the use of communication methods based on industry-wide Web-service standards (e.g. SOAP). SOA can be used to guide design in each architectural domain as the overall solution design takes shape.

A schooling ICT system will have three main architectural “domains” – Software, Physical Infrastructure (hardware) and Information. The goal of SOA is to define architectures in terms of services. Each of these start at the conceptual level – i.e. the AFC mapping that we covered in Step 2 – before drilling down into logical and physical designs. 

Architecture Domains

The conceptual architecture summarises the overall design from the perspective of the user; the logical architecture shows how services work; the physical architecture shows how the hardware is configured.   


Here, AFCs are chunked into layers and groups that define what services stakeholders will receive, and where those services come from.

Conceptual Architecture


In the Logical Architecture, the Conceptual Architecture is re-drawn as a series of technical service layers and blocks with clear relationships:

Logical Architecture


The Physical Architecture sets out where the physical infrastructure components sit in relation to one another in order to deliver the services defined in the Logical Architecture:

Physical Architecture


The great thing about standards is that there are so many to choose from! Industry standards can certainly help simplification if they themselves are simple to deploy. Choosing standards that partners or vendors should adhere to can be a way of simplifying interfaces between organisational boundaries and simplifying interoperability.

There are many standards for IT as a whole and for a complete list I recommend “Enterprise Architecture at Work” by Marc Lankhorst et al., Springer. For the education domain, and for schooling in particular, there are a few standards, but their application in schooling solutions across the world is inconsistent to say the least – they often just get in the way.

Below is a sample of education relevant standards:

E-Folio IMS e-folio
Identity Management Shibboleth, LDAP, Kerberos
Content Management Metadata: IMS/IEEE LTSC Metadata & Dublin Core, IMS Content Packaging, IMS Digital Repositories
Content creation XML
Data Management SIF, ZIS, Metadata: IMS/IEEE LTSC Metadata & Dublin Core
Collaboration and Communication IMS Enterprise Services, SIF, XML/Web Services
Business Process Integration Business Process Execution Language for Web Services (BPEL4WS)
Learning Management IMS Enterprise Services Web Services, SIF, XML/Web Services
Library Management/resource management   IMS Resource List interoperability, OpenURL, Z39.50;Z39.50, SRU/ SRW (mainstream search protocol), MARC 21bibliographic record format, DC (Dublin Core)
Assessment and Reporting IMS Question & Test Spec
Staff and Student Management IMS Learner Information, IMS Enterprise

Of these, SCORM and SIF are the most widely used in schooling systems.

The golden rule of simplification when it comes to standards is to only apply them if there is a strong case clearly linked to a well-defined need.

5. Move to Next Maturity Level

What counts as a good SEA in the highest performing schooling systems in the world will be completely different to that of schooling systems taking their first steps towards using ICT. Naturally, schooling systems need to evolve, therefore it makes sense to think of SEA not as a static blueprint but rather a series of steps on a maturity continuum.

As discussed in earlier articles, there are four quite clear stages of schooling system maturity –

Often, entire technology categories – such as laptops or whiteboards – are seen as an end in themselves and are implemented without considering how they fit within the broader organisation. This, of course, just increases complexity. A better approach is to identify the current maturity level of your organisation, then analyse the steps that need to be taken to get to the next levels of maturity and use solution projects to get there. 

Putting It All Together

To summarise, driving out complexity is about structuring ICT in terms of architectures and processes, and then applying models, methods and disciplines to solution development.

  • The container for managing the sum total of the complexity of any large organisation is Enterprise Architecture, and the domain specific iteration of Enterprise Architecture for schooling is Schooling Enterprise Architecture (SEA).
  • An SEA Governance Team needs to be responsible for directing system development policies. Policy should state “simplification” as a key design goal.
  • Mapping the functions of the organisation using partitioning to decompose functions into Autonomous Functional Capabilities (AFCs) is a key next step.
  • Further simplification can be achieved through rationalisation – which includes removing, consolidating and prioritising AFCs.
  • The goal of developing schooling ICT systems is to progress along a maturity continuum comprising four distinct phases. This is achieved through running solution projects.
  • Solution projects should be run through the MSF process
  • Solutions are developed through designing Conceptual, Logical and Physical architectures and this should be guided by Services Orientated Architecture.
  • Standards may have a role in some solutions projects, but should only be used where there is a clear need to do so.
SEA Process